Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrval2 Unicode version

Theorem cvrval2 28265
Description: Binary relation expressing  Y covers  X. Definition of covers in [Kalmbach] p. 15. (cvbr2 22693 analog.) (Contributed by NM, 16-Nov-2011.)
Hypotheses
Ref Expression
cvrletr.b  |-  B  =  ( Base `  K
)
cvrletr.l  |-  .<_  =  ( le `  K )
cvrletr.s  |-  .<  =  ( lt `  K )
cvrletr.c  |-  C  =  (  <o  `  K )
Assertion
Ref Expression
cvrval2  |-  ( ( K  e.  A  /\  X  e.  B  /\  Y  e.  B )  ->  ( X C Y  <-> 
( X  .<  Y  /\  A. z  e.  B  ( ( X  .<  z  /\  z  .<_  Y )  ->  z  =  Y ) ) ) )
Distinct variable groups:    z, A    z, B    z, K    z, X    z, Y
Allowed substitution hints:    C( z)    .< ( z)    .<_ ( z)

Proof of Theorem cvrval2
StepHypRef Expression
1 cvrletr.b . . 3  |-  B  =  ( Base `  K
)
2 cvrletr.s . . 3  |-  .<  =  ( lt `  K )
3 cvrletr.c . . 3  |-  C  =  (  <o  `  K )
41, 2, 3cvrval 28260 . 2  |-  ( ( K  e.  A  /\  X  e.  B  /\  Y  e.  B )  ->  ( X C Y  <-> 
( X  .<  Y  /\  -.  E. z  e.  B  ( X  .<  z  /\  z  .<  Y ) ) ) )
5 iman 415 . . . . . . . 8  |-  ( ( ( X  .<  z  /\  z  .<_  Y )  ->  z  =  Y )  <->  -.  ( ( X  .<  z  /\  z  .<_  Y )  /\  -.  z  =  Y )
)
6 df-ne 2414 . . . . . . . . 9  |-  ( z  =/=  Y  <->  -.  z  =  Y )
76anbi2i 678 . . . . . . . 8  |-  ( ( ( X  .<  z  /\  z  .<_  Y )  /\  z  =/=  Y
)  <->  ( ( X 
.<  z  /\  z  .<_  Y )  /\  -.  z  =  Y )
)
85, 7xchbinxr 304 . . . . . . 7  |-  ( ( ( X  .<  z  /\  z  .<_  Y )  ->  z  =  Y )  <->  -.  ( ( X  .<  z  /\  z  .<_  Y )  /\  z  =/=  Y ) )
9 cvrletr.l . . . . . . . . . . . . 13  |-  .<_  =  ( le `  K )
109, 2pltval 13938 . . . . . . . . . . . 12  |-  ( ( K  e.  A  /\  z  e.  B  /\  Y  e.  B )  ->  ( z  .<  Y  <->  ( z  .<_  Y  /\  z  =/= 
Y ) ) )
11103com23 1162 . . . . . . . . . . 11  |-  ( ( K  e.  A  /\  Y  e.  B  /\  z  e.  B )  ->  ( z  .<  Y  <->  ( z  .<_  Y  /\  z  =/= 
Y ) ) )
12113expa 1156 . . . . . . . . . 10  |-  ( ( ( K  e.  A  /\  Y  e.  B
)  /\  z  e.  B )  ->  (
z  .<  Y  <->  ( z  .<_  Y  /\  z  =/= 
Y ) ) )
1312anbi2d 687 . . . . . . . . 9  |-  ( ( ( K  e.  A  /\  Y  e.  B
)  /\  z  e.  B )  ->  (
( X  .<  z  /\  z  .<  Y )  <-> 
( X  .<  z  /\  ( z  .<_  Y  /\  z  =/=  Y ) ) ) )
14 anass 633 . . . . . . . . 9  |-  ( ( ( X  .<  z  /\  z  .<_  Y )  /\  z  =/=  Y
)  <->  ( X  .<  z  /\  ( z  .<_  Y  /\  z  =/=  Y
) ) )
1513, 14syl6rbbr 257 . . . . . . . 8  |-  ( ( ( K  e.  A  /\  Y  e.  B
)  /\  z  e.  B )  ->  (
( ( X  .<  z  /\  z  .<_  Y )  /\  z  =/=  Y
)  <->  ( X  .<  z  /\  z  .<  Y ) ) )
1615notbid 287 . . . . . . 7  |-  ( ( ( K  e.  A  /\  Y  e.  B
)  /\  z  e.  B )  ->  ( -.  ( ( X  .<  z  /\  z  .<_  Y )  /\  z  =/=  Y
)  <->  -.  ( X  .<  z  /\  z  .<  Y ) ) )
178, 16syl5bb 250 . . . . . 6  |-  ( ( ( K  e.  A  /\  Y  e.  B
)  /\  z  e.  B )  ->  (
( ( X  .<  z  /\  z  .<_  Y )  ->  z  =  Y )  <->  -.  ( X  .<  z  /\  z  .<  Y ) ) )
1817ralbidva 2523 . . . . 5  |-  ( ( K  e.  A  /\  Y  e.  B )  ->  ( A. z  e.  B  ( ( X 
.<  z  /\  z  .<_  Y )  ->  z  =  Y )  <->  A. z  e.  B  -.  ( X  .<  z  /\  z  .<  Y ) ) )
19 ralnex 2517 . . . . 5  |-  ( A. z  e.  B  -.  ( X  .<  z  /\  z  .<  Y )  <->  -.  E. z  e.  B  ( X  .<  z  /\  z  .<  Y ) )
2018, 19syl6bb 254 . . . 4  |-  ( ( K  e.  A  /\  Y  e.  B )  ->  ( A. z  e.  B  ( ( X 
.<  z  /\  z  .<_  Y )  ->  z  =  Y )  <->  -.  E. z  e.  B  ( X  .<  z  /\  z  .<  Y ) ) )
2120anbi2d 687 . . 3  |-  ( ( K  e.  A  /\  Y  e.  B )  ->  ( ( X  .<  Y  /\  A. z  e.  B  ( ( X 
.<  z  /\  z  .<_  Y )  ->  z  =  Y ) )  <->  ( X  .<  Y  /\  -.  E. z  e.  B  ( X  .<  z  /\  z  .<  Y ) ) ) )
22213adant2 979 . 2  |-  ( ( K  e.  A  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .<  Y  /\  A. z  e.  B  ( ( X 
.<  z  /\  z  .<_  Y )  ->  z  =  Y ) )  <->  ( X  .<  Y  /\  -.  E. z  e.  B  ( X  .<  z  /\  z  .<  Y ) ) ) )
234, 22bitr4d 249 1  |-  ( ( K  e.  A  /\  X  e.  B  /\  Y  e.  B )  ->  ( X C Y  <-> 
( X  .<  Y  /\  A. z  e.  B  ( ( X  .<  z  /\  z  .<_  Y )  ->  z  =  Y ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2412   A.wral 2509   E.wrex 2510   class class class wbr 3920   ` cfv 4592   Basecbs 13022   lecple 13089   ltcplt 13919    <o ccvr 28253
This theorem is referenced by:  isat3  28298  cvlcvr1  28330
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-rab 2516  df-v 2729  df-sbc 2922  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fv 4608  df-plt 13936  df-covers 28257
  Copyright terms: Public domain W3C validator