MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxp2lim Unicode version

Theorem cxp2lim 20287
Description: Any power grows slower than any exponential with base greater than  1. (Contributed by Mario Carneiro, 18-Sep-2014.)
Assertion
Ref Expression
cxp2lim  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  (
n  e.  RR+  |->  ( ( n  ^ c  A
)  /  ( B  ^ c  n ) ) )  ~~> r  0 )
Distinct variable groups:    A, n    B, n

Proof of Theorem cxp2lim
StepHypRef Expression
1 1re 8853 . . . . . . . 8  |-  1  e.  RR
2 elicopnf 10755 . . . . . . . 8  |-  ( 1  e.  RR  ->  (
n  e.  ( 1 [,)  +oo )  <->  ( n  e.  RR  /\  1  <_  n ) ) )
31, 2ax-mp 8 . . . . . . 7  |-  ( n  e.  ( 1 [,) 
+oo )  <->  ( n  e.  RR  /\  1  <_  n ) )
43simplbi 446 . . . . . 6  |-  ( n  e.  ( 1 [,) 
+oo )  ->  n  e.  RR )
5 0re 8854 . . . . . . . 8  |-  0  e.  RR
65a1i 10 . . . . . . 7  |-  ( n  e.  ( 1 [,) 
+oo )  ->  0  e.  RR )
71a1i 10 . . . . . . 7  |-  ( n  e.  ( 1 [,) 
+oo )  ->  1  e.  RR )
8 0lt1 9312 . . . . . . . 8  |-  0  <  1
98a1i 10 . . . . . . 7  |-  ( n  e.  ( 1 [,) 
+oo )  ->  0  <  1 )
103simprbi 450 . . . . . . 7  |-  ( n  e.  ( 1 [,) 
+oo )  ->  1  <_  n )
116, 7, 4, 9, 10ltletrd 8992 . . . . . 6  |-  ( n  e.  ( 1 [,) 
+oo )  ->  0  <  n )
124, 11elrpd 10404 . . . . 5  |-  ( n  e.  ( 1 [,) 
+oo )  ->  n  e.  RR+ )
1312ssriv 3197 . . . 4  |-  ( 1 [,)  +oo )  C_  RR+
14 resmpt 5016 . . . 4  |-  ( ( 1 [,)  +oo )  C_  RR+  ->  ( ( n  e.  RR+  |->  ( ( n  ^ c  A
)  /  ( B  ^ c  n ) ) )  |`  (
1 [,)  +oo ) )  =  ( n  e.  ( 1 [,)  +oo )  |->  ( ( n  ^ c  A )  /  ( B  ^ c  n ) ) ) )
1513, 14ax-mp 8 . . 3  |-  ( ( n  e.  RR+  |->  ( ( n  ^ c  A
)  /  ( B  ^ c  n ) ) )  |`  (
1 [,)  +oo ) )  =  ( n  e.  ( 1 [,)  +oo )  |->  ( ( n  ^ c  A )  /  ( B  ^ c  n ) ) )
165a1i 10 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  0  e.  RR )
1713a1i 10 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  (
1 [,)  +oo )  C_  RR+ )
18 rpre 10376 . . . . . . . . . 10  |-  ( n  e.  RR+  ->  n  e.  RR )
1918adantl 452 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  n  e.  RR+ )  ->  n  e.  RR )
20 rpge0 10382 . . . . . . . . . 10  |-  ( n  e.  RR+  ->  0  <_  n )
2120adantl 452 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  n  e.  RR+ )  -> 
0  <_  n )
22 simpl2 959 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  n  e.  RR+ )  ->  B  e.  RR )
235a1i 10 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  n  e.  RR+ )  -> 
0  e.  RR )
241a1i 10 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  n  e.  RR+ )  -> 
1  e.  RR )
258a1i 10 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  n  e.  RR+ )  -> 
0  <  1 )
26 simpl3 960 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  n  e.  RR+ )  -> 
1  <  B )
2723, 24, 22, 25, 26lttrd 8993 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  n  e.  RR+ )  -> 
0  <  B )
2822, 27elrpd 10404 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  n  e.  RR+ )  ->  B  e.  RR+ )
2928, 19rpcxpcld 20093 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  n  e.  RR+ )  -> 
( B  ^ c  n )  e.  RR+ )
30 simp1 955 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  A  e.  RR )
31 ifcl 3614 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  1  e.  RR )  ->  if ( 1  <_  A ,  A , 
1 )  e.  RR )
3230, 1, 31sylancl 643 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  if ( 1  <_  A ,  A ,  1 )  e.  RR )
331a1i 10 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  1  e.  RR )
348a1i 10 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  0  <  1 )
35 max1 10530 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  RR  /\  A  e.  RR )  ->  1  <_  if (
1  <_  A ,  A ,  1 ) )
361, 30, 35sylancr 644 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  1  <_  if ( 1  <_  A ,  A , 
1 ) )
3716, 33, 32, 34, 36ltletrd 8992 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  0  <  if ( 1  <_  A ,  A , 
1 ) )
3832, 37elrpd 10404 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  if ( 1  <_  A ,  A ,  1 )  e.  RR+ )
3938rprecred 10417 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  (
1  /  if ( 1  <_  A ,  A ,  1 ) )  e.  RR )
4039adantr 451 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  n  e.  RR+ )  -> 
( 1  /  if ( 1  <_  A ,  A ,  1 ) )  e.  RR )
4129, 40rpcxpcld 20093 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  n  e.  RR+ )  -> 
( ( B  ^ c  n )  ^ c 
( 1  /  if ( 1  <_  A ,  A ,  1 ) ) )  e.  RR+ )
4232recnd 8877 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  if ( 1  <_  A ,  A ,  1 )  e.  CC )
4342adantr 451 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  n  e.  RR+ )  ->  if ( 1  <_  A ,  A ,  1 )  e.  CC )
4419, 21, 41, 43divcxpd 20085 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  n  e.  RR+ )  -> 
( ( n  / 
( ( B  ^ c  n )  ^ c 
( 1  /  if ( 1  <_  A ,  A ,  1 ) ) ) )  ^ c  if ( 1  <_  A ,  A , 
1 ) )  =  ( ( n  ^ c  if ( 1  <_  A ,  A , 
1 ) )  / 
( ( ( B  ^ c  n )  ^ c  ( 1  /  if ( 1  <_  A ,  A ,  1 ) ) )  ^ c  if ( 1  <_  A ,  A ,  1 ) ) ) )
4538adantr 451 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  n  e.  RR+ )  ->  if ( 1  <_  A ,  A ,  1 )  e.  RR+ )
4645rpne0d 10411 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  n  e.  RR+ )  ->  if ( 1  <_  A ,  A ,  1 )  =/=  0 )
4743, 46recid2d 9548 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  n  e.  RR+ )  -> 
( ( 1  /  if ( 1  <_  A ,  A ,  1 ) )  x.  if ( 1  <_  A ,  A ,  1 ) )  =  1 )
4847oveq2d 5890 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  n  e.  RR+ )  -> 
( ( B  ^ c  n )  ^ c 
( ( 1  /  if ( 1  <_  A ,  A ,  1 ) )  x.  if ( 1  <_  A ,  A ,  1 ) ) )  =  ( ( B  ^ c  n )  ^ c 
1 ) )
4929, 40, 43cxpmuld 20097 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  n  e.  RR+ )  -> 
( ( B  ^ c  n )  ^ c 
( ( 1  /  if ( 1  <_  A ,  A ,  1 ) )  x.  if ( 1  <_  A ,  A ,  1 ) ) )  =  ( ( ( B  ^ c  n )  ^ c 
( 1  /  if ( 1  <_  A ,  A ,  1 ) ) )  ^ c  if ( 1  <_  A ,  A ,  1 ) ) )
5029rpcnd 10408 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  n  e.  RR+ )  -> 
( B  ^ c  n )  e.  CC )
5150cxp1d 20069 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  n  e.  RR+ )  -> 
( ( B  ^ c  n )  ^ c 
1 )  =  ( B  ^ c  n ) )
5248, 49, 513eqtr3d 2336 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  n  e.  RR+ )  -> 
( ( ( B  ^ c  n )  ^ c  ( 1  /  if ( 1  <_  A ,  A ,  1 ) ) )  ^ c  if ( 1  <_  A ,  A ,  1 ) )  =  ( B  ^ c  n ) )
5352oveq2d 5890 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  n  e.  RR+ )  -> 
( ( n  ^ c  if ( 1  <_  A ,  A , 
1 ) )  / 
( ( ( B  ^ c  n )  ^ c  ( 1  /  if ( 1  <_  A ,  A ,  1 ) ) )  ^ c  if ( 1  <_  A ,  A ,  1 ) ) )  =  ( ( n  ^ c  if ( 1  <_  A ,  A ,  1 ) )  /  ( B  ^ c  n ) ) )
5444, 53eqtrd 2328 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  n  e.  RR+ )  -> 
( ( n  / 
( ( B  ^ c  n )  ^ c 
( 1  /  if ( 1  <_  A ,  A ,  1 ) ) ) )  ^ c  if ( 1  <_  A ,  A , 
1 ) )  =  ( ( n  ^ c  if ( 1  <_  A ,  A , 
1 ) )  / 
( B  ^ c  n ) ) )
5554mpteq2dva 4122 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  (
n  e.  RR+  |->  ( ( n  /  ( ( B  ^ c  n )  ^ c  ( 1  /  if ( 1  <_  A ,  A ,  1 ) ) ) )  ^ c  if ( 1  <_  A ,  A , 
1 ) ) )  =  ( n  e.  RR+  |->  ( ( n  ^ c  if ( 1  <_  A ,  A ,  1 ) )  /  ( B  ^ c  n ) ) ) )
56 ovex 5899 . . . . . . . 8  |-  ( n  /  ( ( B  ^ c  n )  ^ c  ( 1  /  if ( 1  <_  A ,  A ,  1 ) ) ) )  e.  _V
5756a1i 10 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  n  e.  RR+ )  -> 
( n  /  (
( B  ^ c  n )  ^ c 
( 1  /  if ( 1  <_  A ,  A ,  1 ) ) ) )  e. 
_V )
5819recnd 8877 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  n  e.  RR+ )  ->  n  e.  CC )
5939recnd 8877 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  (
1  /  if ( 1  <_  A ,  A ,  1 ) )  e.  CC )
6059adantr 451 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  n  e.  RR+ )  -> 
( 1  /  if ( 1  <_  A ,  A ,  1 ) )  e.  CC )
6158, 60mulcomd 8872 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  n  e.  RR+ )  -> 
( n  x.  (
1  /  if ( 1  <_  A ,  A ,  1 ) ) )  =  ( ( 1  /  if ( 1  <_  A ,  A ,  1 ) )  x.  n ) )
6261oveq2d 5890 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  n  e.  RR+ )  -> 
( B  ^ c 
( n  x.  (
1  /  if ( 1  <_  A ,  A ,  1 ) ) ) )  =  ( B  ^ c 
( ( 1  /  if ( 1  <_  A ,  A ,  1 ) )  x.  n ) ) )
6328, 19, 60cxpmuld 20097 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  n  e.  RR+ )  -> 
( B  ^ c 
( n  x.  (
1  /  if ( 1  <_  A ,  A ,  1 ) ) ) )  =  ( ( B  ^ c  n )  ^ c 
( 1  /  if ( 1  <_  A ,  A ,  1 ) ) ) )
6428, 40, 58cxpmuld 20097 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  n  e.  RR+ )  -> 
( B  ^ c 
( ( 1  /  if ( 1  <_  A ,  A ,  1 ) )  x.  n ) )  =  ( ( B  ^ c  ( 1  /  if ( 1  <_  A ,  A ,  1 ) ) )  ^ c  n ) )
6562, 63, 643eqtr3d 2336 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  n  e.  RR+ )  -> 
( ( B  ^ c  n )  ^ c 
( 1  /  if ( 1  <_  A ,  A ,  1 ) ) )  =  ( ( B  ^ c 
( 1  /  if ( 1  <_  A ,  A ,  1 ) ) )  ^ c  n ) )
6665oveq2d 5890 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  n  e.  RR+ )  -> 
( n  /  (
( B  ^ c  n )  ^ c 
( 1  /  if ( 1  <_  A ,  A ,  1 ) ) ) )  =  ( n  /  (
( B  ^ c 
( 1  /  if ( 1  <_  A ,  A ,  1 ) ) )  ^ c  n ) ) )
6766mpteq2dva 4122 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  (
n  e.  RR+  |->  ( n  /  ( ( B  ^ c  n )  ^ c  ( 1  /  if ( 1  <_  A ,  A ,  1 ) ) ) ) )  =  ( n  e.  RR+  |->  ( n  /  (
( B  ^ c 
( 1  /  if ( 1  <_  A ,  A ,  1 ) ) )  ^ c  n ) ) ) )
68 simp2 956 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  B  e.  RR )
69 simp3 957 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  1  <  B )
7016, 33, 68, 34, 69lttrd 8993 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  0  <  B )
7168, 70elrpd 10404 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  B  e.  RR+ )
7271, 39rpcxpcld 20093 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  ( B  ^ c  ( 1  /  if ( 1  <_  A ,  A ,  1 ) ) )  e.  RR+ )
7372rpred 10406 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  ( B  ^ c  ( 1  /  if ( 1  <_  A ,  A ,  1 ) ) )  e.  RR )
74591cxpd 20070 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  (
1  ^ c  ( 1  /  if ( 1  <_  A ,  A ,  1 ) ) )  =  1 )
75 0le1 9313 . . . . . . . . . . . . 13  |-  0  <_  1
7675a1i 10 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  0  <_  1 )
7771rpge0d 10410 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  0  <_  B )
7838rpreccld 10416 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  (
1  /  if ( 1  <_  A ,  A ,  1 ) )  e.  RR+ )
7933, 76, 68, 77, 78cxplt2d 20089 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  (
1  <  B  <->  ( 1  ^ c  ( 1  /  if ( 1  <_  A ,  A ,  1 ) ) )  <  ( B  ^ c  ( 1  /  if ( 1  <_  A ,  A ,  1 ) ) ) ) )
8069, 79mpbid 201 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  (
1  ^ c  ( 1  /  if ( 1  <_  A ,  A ,  1 ) ) )  <  ( B  ^ c  ( 1  /  if ( 1  <_  A ,  A ,  1 ) ) ) )
8174, 80eqbrtrrd 4061 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  1  <  ( B  ^ c 
( 1  /  if ( 1  <_  A ,  A ,  1 ) ) ) )
82 cxp2limlem 20286 . . . . . . . . 9  |-  ( ( ( B  ^ c 
( 1  /  if ( 1  <_  A ,  A ,  1 ) ) )  e.  RR  /\  1  <  ( B  ^ c  ( 1  /  if ( 1  <_  A ,  A ,  1 ) ) ) )  ->  (
n  e.  RR+  |->  ( n  /  ( ( B  ^ c  ( 1  /  if ( 1  <_  A ,  A ,  1 ) ) )  ^ c  n ) ) )  ~~> r  0 )
8373, 81, 82syl2anc 642 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  (
n  e.  RR+  |->  ( n  /  ( ( B  ^ c  ( 1  /  if ( 1  <_  A ,  A ,  1 ) ) )  ^ c  n ) ) )  ~~> r  0 )
8467, 83eqbrtrd 4059 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  (
n  e.  RR+  |->  ( n  /  ( ( B  ^ c  n )  ^ c  ( 1  /  if ( 1  <_  A ,  A ,  1 ) ) ) ) )  ~~> r  0 )
8557, 84, 38rlimcxp 20284 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  (
n  e.  RR+  |->  ( ( n  /  ( ( B  ^ c  n )  ^ c  ( 1  /  if ( 1  <_  A ,  A ,  1 ) ) ) )  ^ c  if ( 1  <_  A ,  A , 
1 ) ) )  ~~> r  0 )
8655, 85eqbrtrrd 4061 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  (
n  e.  RR+  |->  ( ( n  ^ c  if ( 1  <_  A ,  A ,  1 ) )  /  ( B  ^ c  n ) ) )  ~~> r  0 )
8717, 86rlimres2 12051 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  (
n  e.  ( 1 [,)  +oo )  |->  ( ( n  ^ c  if ( 1  <_  A ,  A ,  1 ) )  /  ( B  ^ c  n ) ) )  ~~> r  0 )
88 simpr 447 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  n  e.  RR+ )  ->  n  e.  RR+ )
8932adantr 451 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  n  e.  RR+ )  ->  if ( 1  <_  A ,  A ,  1 )  e.  RR )
9088, 89rpcxpcld 20093 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  n  e.  RR+ )  -> 
( n  ^ c  if ( 1  <_  A ,  A ,  1 ) )  e.  RR+ )
9190, 29rpdivcld 10423 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  n  e.  RR+ )  -> 
( ( n  ^ c  if ( 1  <_  A ,  A , 
1 ) )  / 
( B  ^ c  n ) )  e.  RR+ )
9291rpred 10406 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  n  e.  RR+ )  -> 
( ( n  ^ c  if ( 1  <_  A ,  A , 
1 ) )  / 
( B  ^ c  n ) )  e.  RR )
9312, 92sylan2 460 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  n  e.  ( 1 [,)  +oo ) )  -> 
( ( n  ^ c  if ( 1  <_  A ,  A , 
1 ) )  / 
( B  ^ c  n ) )  e.  RR )
94 simpl1 958 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  n  e.  RR+ )  ->  A  e.  RR )
9588, 94rpcxpcld 20093 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  n  e.  RR+ )  -> 
( n  ^ c  A )  e.  RR+ )
9695, 29rpdivcld 10423 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  n  e.  RR+ )  -> 
( ( n  ^ c  A )  /  ( B  ^ c  n ) )  e.  RR+ )
9712, 96sylan2 460 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  n  e.  ( 1 [,)  +oo ) )  -> 
( ( n  ^ c  A )  /  ( B  ^ c  n ) )  e.  RR+ )
9897rpred 10406 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  n  e.  ( 1 [,)  +oo ) )  -> 
( ( n  ^ c  A )  /  ( B  ^ c  n ) )  e.  RR )
9912, 95sylan2 460 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  n  e.  ( 1 [,)  +oo ) )  -> 
( n  ^ c  A )  e.  RR+ )
10099rpred 10406 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  n  e.  ( 1 [,)  +oo ) )  -> 
( n  ^ c  A )  e.  RR )
10112, 90sylan2 460 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  n  e.  ( 1 [,)  +oo ) )  -> 
( n  ^ c  if ( 1  <_  A ,  A ,  1 ) )  e.  RR+ )
102101rpred 10406 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  n  e.  ( 1 [,)  +oo ) )  -> 
( n  ^ c  if ( 1  <_  A ,  A ,  1 ) )  e.  RR )
10312, 29sylan2 460 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  n  e.  ( 1 [,)  +oo ) )  -> 
( B  ^ c  n )  e.  RR+ )
1044adantl 452 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  n  e.  ( 1 [,)  +oo ) )  ->  n  e.  RR )
10510adantl 452 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  n  e.  ( 1 [,)  +oo ) )  -> 
1  <_  n )
106 simpl1 958 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  n  e.  ( 1 [,)  +oo ) )  ->  A  e.  RR )
10732adantr 451 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  n  e.  ( 1 [,)  +oo ) )  ->  if ( 1  <_  A ,  A ,  1 )  e.  RR )
108 max2 10532 . . . . . . . 8  |-  ( ( 1  e.  RR  /\  A  e.  RR )  ->  A  <_  if (
1  <_  A ,  A ,  1 ) )
1091, 106, 108sylancr 644 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  n  e.  ( 1 [,)  +oo ) )  ->  A  <_  if ( 1  <_  A ,  A ,  1 ) )
110104, 105, 106, 107, 109cxplead 20084 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  n  e.  ( 1 [,)  +oo ) )  -> 
( n  ^ c  A )  <_  (
n  ^ c  if ( 1  <_  A ,  A ,  1 ) ) )
111100, 102, 103, 110lediv1dd 10460 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  n  e.  ( 1 [,)  +oo ) )  -> 
( ( n  ^ c  A )  /  ( B  ^ c  n ) )  <_  ( (
n  ^ c  if ( 1  <_  A ,  A ,  1 ) )  /  ( B  ^ c  n ) ) )
112111adantrr 697 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  ( n  e.  (
1 [,)  +oo )  /\  0  <_  n ) )  ->  ( ( n  ^ c  A )  /  ( B  ^ c  n ) )  <_ 
( ( n  ^ c  if ( 1  <_  A ,  A , 
1 ) )  / 
( B  ^ c  n ) ) )
11397rpge0d 10410 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  n  e.  ( 1 [,)  +oo ) )  -> 
0  <_  ( (
n  ^ c  A
)  /  ( B  ^ c  n ) ) )
114113adantrr 697 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  ( n  e.  (
1 [,)  +oo )  /\  0  <_  n ) )  ->  0  <_  (
( n  ^ c  A )  /  ( B  ^ c  n ) ) )
11516, 16, 87, 93, 98, 112, 114rlimsqz2 12140 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  (
n  e.  ( 1 [,)  +oo )  |->  ( ( n  ^ c  A
)  /  ( B  ^ c  n ) ) )  ~~> r  0 )
11615, 115syl5eqbr 4072 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  (
( n  e.  RR+  |->  ( ( n  ^ c  A )  /  ( B  ^ c  n ) ) )  |`  (
1 [,)  +oo ) )  ~~> r  0 )
11796rpcnd 10408 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  /\  n  e.  RR+ )  -> 
( ( n  ^ c  A )  /  ( B  ^ c  n ) )  e.  CC )
118 eqid 2296 . . . 4  |-  ( n  e.  RR+  |->  ( ( n  ^ c  A
)  /  ( B  ^ c  n ) ) )  =  ( n  e.  RR+  |->  ( ( n  ^ c  A
)  /  ( B  ^ c  n ) ) )
119117, 118fmptd 5700 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  (
n  e.  RR+  |->  ( ( n  ^ c  A
)  /  ( B  ^ c  n ) ) ) : RR+ --> CC )
120 rpssre 10380 . . . 4  |-  RR+  C_  RR
121120a1i 10 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  RR+  C_  RR )
122119, 121, 33rlimresb 12055 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  (
( n  e.  RR+  |->  ( ( n  ^ c  A )  /  ( B  ^ c  n ) ) )  ~~> r  0  <-> 
( ( n  e.  RR+  |->  ( ( n  ^ c  A )  /  ( B  ^ c  n ) ) )  |`  ( 1 [,)  +oo ) )  ~~> r  0 ) )
123116, 122mpbird 223 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  1  <  B )  ->  (
n  e.  RR+  |->  ( ( n  ^ c  A
)  /  ( B  ^ c  n ) ) )  ~~> r  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   _Vcvv 2801    C_ wss 3165   ifcif 3578   class class class wbr 4039    e. cmpt 4093    |` cres 4707  (class class class)co 5874   CCcc 8751   RRcr 8752   0cc0 8753   1c1 8754    x. cmul 8758    +oocpnf 8880    < clt 8883    <_ cle 8884    / cdiv 9439   RR+crp 10370   [,)cico 10674    ~~> r crli 11975    ^ c ccxp 19929
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832  ax-mulf 8833
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-pm 6791  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-sup 7210  df-oi 7241  df-card 7588  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-ioo 10676  df-ioc 10677  df-ico 10678  df-icc 10679  df-fz 10799  df-fzo 10887  df-fl 10941  df-mod 10990  df-seq 11063  df-exp 11121  df-fac 11305  df-bc 11332  df-hash 11354  df-shft 11578  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-limsup 11961  df-clim 11978  df-rlim 11979  df-sum 12175  df-ef 12365  df-sin 12367  df-cos 12368  df-pi 12370  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-starv 13239  df-sca 13240  df-vsca 13241  df-tset 13243  df-ple 13244  df-ds 13246  df-hom 13248  df-cco 13249  df-rest 13343  df-topn 13344  df-topgen 13360  df-pt 13361  df-prds 13364  df-xrs 13419  df-0g 13420  df-gsum 13421  df-qtop 13426  df-imas 13427  df-xps 13429  df-mre 13504  df-mrc 13505  df-acs 13507  df-mnd 14383  df-submnd 14432  df-mulg 14508  df-cntz 14809  df-cmn 15107  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-cnfld 16394  df-top 16652  df-bases 16654  df-topon 16655  df-topsp 16656  df-cld 16772  df-ntr 16773  df-cls 16774  df-nei 16851  df-lp 16884  df-perf 16885  df-cn 16973  df-cnp 16974  df-haus 17059  df-tx 17273  df-hmeo 17462  df-fbas 17536  df-fg 17537  df-fil 17557  df-fm 17649  df-flim 17650  df-flf 17651  df-xms 17901  df-ms 17902  df-tms 17903  df-cncf 18398  df-limc 19232  df-dv 19233  df-log 19930  df-cxp 19931
  Copyright terms: Public domain W3C validator