Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalaw Unicode version

Theorem dalaw 28979
Description: Desargues' law, derived from Desargues' theorem dath 28829 and with no conditions on the atoms. If triples  <. P ,  Q ,  R >. and  <. S ,  T ,  U >. are centrally perspective, i.e.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ), then they are axially perspective. Theorem 13.3 of [Crawley] p. 110. (Contributed by NM, 7-Oct-2012.)
Hypotheses
Ref Expression
dalaw.l  |-  .<_  =  ( le `  K )
dalaw.j  |-  .\/  =  ( join `  K )
dalaw.m  |-  ./\  =  ( meet `  K )
dalaw.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
dalaw  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U )  ->  (
( P  .\/  Q
)  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) ) )

Proof of Theorem dalaw
StepHypRef Expression
1 dalaw.l . . . . . . . . 9  |-  .<_  =  ( le `  K )
2 dalaw.j . . . . . . . . 9  |-  .\/  =  ( join `  K )
3 dalaw.m . . . . . . . . 9  |-  ./\  =  ( meet `  K )
4 dalaw.a . . . . . . . . 9  |-  A  =  ( Atoms `  K )
5 eqid 2253 . . . . . . . . 9  |-  ( LPlanes `  K )  =  (
LPlanes `  K )
61, 2, 3, 4, 5dalawlem14 28977 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\ 
-.  ( ( ( P  .\/  Q ) 
.\/  R )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( P 
.\/  Q )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) ) )  /\  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( (
( Q  .\/  R
)  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) )
763expib 1159 . . . . . . 7  |-  ( ( K  e.  HL  /\  -.  ( ( ( P 
.\/  Q )  .\/  R )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( Q 
.\/  R )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  P ) ) )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  ->  ( (
( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) ) )
873exp 1155 . . . . . 6  |-  ( K  e.  HL  ->  ( -.  ( ( ( P 
.\/  Q )  .\/  R )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( Q 
.\/  R )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  P ) ) )  ->  (
( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U )  ->  ( ( ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  ->  (
( P  .\/  Q
)  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) ) ) ) )
91, 2, 3, 4, 5dalawlem15 28978 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\ 
-.  ( ( ( S  .\/  T ) 
.\/  U )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( S 
.\/  T )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( T  .\/  U )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( U 
.\/  S ) ) )  /\  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( (
( Q  .\/  R
)  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) )
1093expib 1159 . . . . . . 7  |-  ( ( K  e.  HL  /\  -.  ( ( ( S 
.\/  T )  .\/  U )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( S  .\/  T )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( T 
.\/  U )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( U  .\/  S ) ) )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  ->  ( (
( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) ) )
11103exp 1155 . . . . . 6  |-  ( K  e.  HL  ->  ( -.  ( ( ( S 
.\/  T )  .\/  U )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( S  .\/  T )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( T 
.\/  U )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( U  .\/  S ) ) )  ->  (
( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U )  ->  ( ( ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  ->  (
( P  .\/  Q
)  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) ) ) ) )
12 simp11 990 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( ( ( ( P  .\/  Q ) 
.\/  R )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( P 
.\/  Q )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) ) )  /\  ( ( ( S  .\/  T
)  .\/  U )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( S 
.\/  T )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( T  .\/  U )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( U 
.\/  S ) ) ) )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  K  e.  HL )
13 simp2 961 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( ( ( ( P  .\/  Q ) 
.\/  R )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( P 
.\/  Q )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) ) )  /\  ( ( ( S  .\/  T
)  .\/  U )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( S 
.\/  T )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( T  .\/  U )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( U 
.\/  S ) ) ) )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )
14 simp3 962 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( ( ( ( P  .\/  Q ) 
.\/  R )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( P 
.\/  Q )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) ) )  /\  ( ( ( S  .\/  T
)  .\/  U )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( S 
.\/  T )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( T  .\/  U )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( U 
.\/  S ) ) ) )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )
15 simp2ll 1027 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  ( ( ( ( P  .\/  Q ) 
.\/  R )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( P 
.\/  Q )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) ) )  /\  ( ( ( S  .\/  T
)  .\/  U )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( S 
.\/  T )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( T  .\/  U )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( U 
.\/  S ) ) ) )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  ->  ( ( P  .\/  Q )  .\/  R )  e.  ( LPlanes `  K ) )
16153ad2ant1 981 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( ( ( ( P  .\/  Q ) 
.\/  R )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( P 
.\/  Q )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) ) )  /\  ( ( ( S  .\/  T
)  .\/  U )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( S 
.\/  T )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( T  .\/  U )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( U 
.\/  S ) ) ) )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( P  .\/  Q )  .\/  R )  e.  ( LPlanes `  K ) )
17 simp2rl 1029 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  ( ( ( ( P  .\/  Q ) 
.\/  R )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( P 
.\/  Q )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) ) )  /\  ( ( ( S  .\/  T
)  .\/  U )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( S 
.\/  T )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( T  .\/  U )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( U 
.\/  S ) ) ) )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  ->  ( ( S  .\/  T )  .\/  U )  e.  ( LPlanes `  K ) )
18173ad2ant1 981 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( ( ( ( P  .\/  Q ) 
.\/  R )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( P 
.\/  Q )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) ) )  /\  ( ( ( S  .\/  T
)  .\/  U )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( S 
.\/  T )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( T  .\/  U )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( U 
.\/  S ) ) ) )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( S  .\/  T )  .\/  U )  e.  ( LPlanes `  K ) )
19 simp2lr 1028 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  ( ( ( ( P  .\/  Q ) 
.\/  R )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( P 
.\/  Q )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) ) )  /\  ( ( ( S  .\/  T
)  .\/  U )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( S 
.\/  T )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( T  .\/  U )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( U 
.\/  S ) ) ) )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  ->  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( Q 
.\/  R )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  P ) ) )
20193ad2ant1 981 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( ( ( ( P  .\/  Q ) 
.\/  R )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( P 
.\/  Q )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) ) )  /\  ( ( ( S  .\/  T
)  .\/  U )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( S 
.\/  T )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( T  .\/  U )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( U 
.\/  S ) ) ) )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( Q 
.\/  R )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  P ) ) )
21 simp2rr 1030 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  ( ( ( ( P  .\/  Q ) 
.\/  R )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( P 
.\/  Q )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) ) )  /\  ( ( ( S  .\/  T
)  .\/  U )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( S 
.\/  T )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( T  .\/  U )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( U 
.\/  S ) ) ) )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  ->  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( S  .\/  T )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( T 
.\/  U )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( U  .\/  S ) ) )
22213ad2ant1 981 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( ( ( ( P  .\/  Q ) 
.\/  R )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( P 
.\/  Q )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) ) )  /\  ( ( ( S  .\/  T
)  .\/  U )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( S 
.\/  T )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( T  .\/  U )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( U 
.\/  S ) ) ) )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( S  .\/  T )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( T 
.\/  U )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( U  .\/  S ) ) )
23 simp13 992 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( ( ( ( P  .\/  Q ) 
.\/  R )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( P 
.\/  Q )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) ) )  /\  ( ( ( S  .\/  T
)  .\/  U )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( S 
.\/  T )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( T  .\/  U )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( U 
.\/  S ) ) ) )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )
241, 2, 3, 4, 5dalawlem1 28964 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( ( ( P 
.\/  Q )  .\/  R )  e.  ( LPlanes `  K )  /\  (
( S  .\/  T
)  .\/  U )  e.  ( LPlanes `  K )
)  /\  ( ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( P  .\/  Q )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( Q 
.\/  R )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  P ) )  /\  ( -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( S  .\/  T )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( T 
.\/  U )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( U  .\/  S ) )  /\  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  U ) ) )  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( (
( Q  .\/  R
)  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) )
2512, 13, 14, 16, 18, 20, 22, 23, 24syl323anc 1217 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( ( ( ( P  .\/  Q ) 
.\/  R )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( P 
.\/  Q )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) ) )  /\  ( ( ( S  .\/  T
)  .\/  U )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( S 
.\/  T )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( T  .\/  U )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( U 
.\/  S ) ) ) )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( (
( Q  .\/  R
)  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) )
26253expib 1159 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( ( ( ( P  .\/  Q ) 
.\/  R )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( P 
.\/  Q )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) ) )  /\  ( ( ( S  .\/  T
)  .\/  U )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( S 
.\/  T )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( T  .\/  U )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( U 
.\/  S ) ) ) )  /\  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U ) )  ->  ( (
( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) ) )
27263exp 1155 . . . . . 6  |-  ( K  e.  HL  ->  (
( ( ( ( P  .\/  Q ) 
.\/  R )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( P 
.\/  Q )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( Q  .\/  R )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( R 
.\/  P ) ) )  /\  ( ( ( S  .\/  T
)  .\/  U )  e.  ( LPlanes `  K )  /\  ( -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( S 
.\/  T )  /\  -.  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( T  .\/  U )  /\  -.  ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  .<_  ( U 
.\/  S ) ) ) )  ->  (
( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U )  ->  ( ( ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  ->  (
( P  .\/  Q
)  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) ) ) ) )
288, 11, 27ecased 915 . . . . 5  |-  ( K  e.  HL  ->  (
( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U )  ->  ( ( ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  ->  (
( P  .\/  Q
)  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) ) ) )
2928exp4a 592 . . . 4  |-  ( K  e.  HL  ->  (
( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U )  ->  ( ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  ->  (
( S  e.  A  /\  T  e.  A  /\  U  e.  A
)  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( (
( Q  .\/  R
)  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) ) ) ) )
3029com34 79 . . 3  |-  ( K  e.  HL  ->  (
( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U )  ->  ( ( S  e.  A  /\  T  e.  A  /\  U  e.  A )  ->  (
( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( (
( Q  .\/  R
)  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P )  ./\  ( U  .\/  S ) ) ) ) ) ) )
3130com24 83 . 2  |-  ( K  e.  HL  ->  (
( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  ->  ( ( S  e.  A  /\  T  e.  A  /\  U  e.  A )  ->  ( ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U )  ->  (
( P  .\/  Q
)  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) ) ) ) )
32313imp 1150 1  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  -> 
( ( ( P 
.\/  S )  ./\  ( Q  .\/  T ) )  .<_  ( R  .\/  U )  ->  (
( P  .\/  Q
)  ./\  ( S  .\/  T ) )  .<_  ( ( ( Q 
.\/  R )  ./\  ( T  .\/  U ) )  .\/  ( ( R  .\/  P ) 
./\  ( U  .\/  S ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   class class class wbr 3920   ` cfv 4592  (class class class)co 5710   lecple 13089   joincjn 13922   meetcmee 13923   Atomscatm 28357   HLchlt 28444   LPlanesclpl 28585
This theorem is referenced by:  cdleme14  29366  cdleme20f  29407  cdlemg9  29727  cdlemg12c  29738  cdlemk6  29930  cdlemk6u  29955
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-iun 3805  df-iin 3806  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-undef 6182  df-riota 6190  df-poset 13924  df-plt 13936  df-lub 13952  df-glb 13953  df-join 13954  df-meet 13955  df-p0 13989  df-lat 13996  df-clat 14058  df-oposet 28270  df-ol 28272  df-oml 28273  df-covers 28360  df-ats 28361  df-atl 28392  df-cvlat 28416  df-hlat 28445  df-llines 28591  df-lplanes 28592  df-lvols 28593  df-psubsp 28596  df-pmap 28597  df-padd 28889
  Copyright terms: Public domain W3C validator