MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrhash Unicode version

Theorem dchrhash 20510
Description: There are exactly  phi ( N ) Dirichlet characters modulo  N. Part of Theorem 6.5.1 of [Shapiro] p. 230. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
sumdchr.g  |-  G  =  (DChr `  N )
sumdchr.d  |-  D  =  ( Base `  G
)
Assertion
Ref Expression
dchrhash  |-  ( N  e.  NN  ->  ( # `
 D )  =  ( phi `  N
) )

Proof of Theorem dchrhash
Dummy variables  x  a are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2283 . . . . . 6  |-  (ℤ/n `  N
)  =  (ℤ/n `  N
)
2 eqid 2283 . . . . . 6  |-  ( Base `  (ℤ/n `  N ) )  =  ( Base `  (ℤ/n `  N
) )
31, 2znfi 16513 . . . . 5  |-  ( N  e.  NN  ->  ( Base `  (ℤ/n `  N ) )  e. 
Fin )
4 sumdchr.g . . . . . 6  |-  G  =  (DChr `  N )
5 sumdchr.d . . . . . 6  |-  D  =  ( Base `  G
)
64, 5dchrfi 20494 . . . . 5  |-  ( N  e.  NN  ->  D  e.  Fin )
7 simprr 733 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( a  e.  (
Base `  (ℤ/n `  N ) )  /\  x  e.  D )
)  ->  x  e.  D )
84, 1, 5, 2, 7dchrf 20481 . . . . . 6  |-  ( ( N  e.  NN  /\  ( a  e.  (
Base `  (ℤ/n `  N ) )  /\  x  e.  D )
)  ->  x :
( Base `  (ℤ/n `  N ) ) --> CC )
9 simprl 732 . . . . . 6  |-  ( ( N  e.  NN  /\  ( a  e.  (
Base `  (ℤ/n `  N ) )  /\  x  e.  D )
)  ->  a  e.  ( Base `  (ℤ/n `  N ) ) )
10 ffvelrn 5663 . . . . . 6  |-  ( ( x : ( Base `  (ℤ/n `  N ) ) --> CC 
/\  a  e.  (
Base `  (ℤ/n `  N ) ) )  ->  ( x `  a )  e.  CC )
118, 9, 10syl2anc 642 . . . . 5  |-  ( ( N  e.  NN  /\  ( a  e.  (
Base `  (ℤ/n `  N ) )  /\  x  e.  D )
)  ->  ( x `  a )  e.  CC )
123, 6, 11fsumcom 12238 . . . 4  |-  ( N  e.  NN  ->  sum_ a  e.  ( Base `  (ℤ/n `  N
) ) sum_ x  e.  D  ( x `  a )  =  sum_ x  e.  D  sum_ a  e.  ( Base `  (ℤ/n `  N
) ) ( x `
 a ) )
13 eqid 2283 . . . . . . 7  |-  ( 1r
`  (ℤ/n `  N ) )  =  ( 1r `  (ℤ/n `  N
) )
14 simpl 443 . . . . . . 7  |-  ( ( N  e.  NN  /\  a  e.  ( Base `  (ℤ/n `  N ) ) )  ->  N  e.  NN )
15 simpr 447 . . . . . . 7  |-  ( ( N  e.  NN  /\  a  e.  ( Base `  (ℤ/n `  N ) ) )  ->  a  e.  (
Base `  (ℤ/n `  N ) ) )
164, 5, 1, 13, 2, 14, 15sumdchr2 20509 . . . . . 6  |-  ( ( N  e.  NN  /\  a  e.  ( Base `  (ℤ/n `  N ) ) )  ->  sum_ x  e.  D  ( x `  a
)  =  if ( a  =  ( 1r
`  (ℤ/n `  N ) ) ,  ( # `  D
) ,  0 ) )
17 elsn 3655 . . . . . . 7  |-  ( a  e.  { ( 1r
`  (ℤ/n `  N ) ) }  <-> 
a  =  ( 1r
`  (ℤ/n `  N ) ) )
18 ifbi 3582 . . . . . . 7  |-  ( ( a  e.  { ( 1r `  (ℤ/n `  N
) ) }  <->  a  =  ( 1r `  (ℤ/n `  N
) ) )  ->  if ( a  e.  {
( 1r `  (ℤ/n `  N
) ) } , 
( # `  D ) ,  0 )  =  if ( a  =  ( 1r `  (ℤ/n `  N
) ) ,  (
# `  D ) ,  0 ) )
1917, 18mp1i 11 . . . . . 6  |-  ( ( N  e.  NN  /\  a  e.  ( Base `  (ℤ/n `  N ) ) )  ->  if ( a  e.  { ( 1r
`  (ℤ/n `  N ) ) } ,  ( # `  D
) ,  0 )  =  if ( a  =  ( 1r `  (ℤ/n `  N ) ) ,  ( # `  D
) ,  0 ) )
2016, 19eqtr4d 2318 . . . . 5  |-  ( ( N  e.  NN  /\  a  e.  ( Base `  (ℤ/n `  N ) ) )  ->  sum_ x  e.  D  ( x `  a
)  =  if ( a  e.  { ( 1r `  (ℤ/n `  N
) ) } , 
( # `  D ) ,  0 ) )
2120sumeq2dv 12176 . . . 4  |-  ( N  e.  NN  ->  sum_ a  e.  ( Base `  (ℤ/n `  N
) ) sum_ x  e.  D  ( x `  a )  =  sum_ a  e.  ( Base `  (ℤ/n `  N ) ) if ( a  e.  {
( 1r `  (ℤ/n `  N
) ) } , 
( # `  D ) ,  0 ) )
22 eqid 2283 . . . . . . 7  |-  ( 0g
`  G )  =  ( 0g `  G
)
23 simpr 447 . . . . . . 7  |-  ( ( N  e.  NN  /\  x  e.  D )  ->  x  e.  D )
244, 1, 5, 22, 23, 2dchrsum 20508 . . . . . 6  |-  ( ( N  e.  NN  /\  x  e.  D )  -> 
sum_ a  e.  (
Base `  (ℤ/n `  N ) ) ( x `  a )  =  if ( x  =  ( 0g `  G ) ,  ( phi `  N ) ,  0 ) )
25 elsn 3655 . . . . . . 7  |-  ( x  e.  { ( 0g
`  G ) }  <-> 
x  =  ( 0g
`  G ) )
26 ifbi 3582 . . . . . . 7  |-  ( ( x  e.  { ( 0g `  G ) }  <->  x  =  ( 0g `  G ) )  ->  if ( x  e.  { ( 0g
`  G ) } ,  ( phi `  N ) ,  0 )  =  if ( x  =  ( 0g
`  G ) ,  ( phi `  N
) ,  0 ) )
2725, 26mp1i 11 . . . . . 6  |-  ( ( N  e.  NN  /\  x  e.  D )  ->  if ( x  e. 
{ ( 0g `  G ) } , 
( phi `  N
) ,  0 )  =  if ( x  =  ( 0g `  G ) ,  ( phi `  N ) ,  0 ) )
2824, 27eqtr4d 2318 . . . . 5  |-  ( ( N  e.  NN  /\  x  e.  D )  -> 
sum_ a  e.  (
Base `  (ℤ/n `  N ) ) ( x `  a )  =  if ( x  e.  { ( 0g
`  G ) } ,  ( phi `  N ) ,  0 ) )
2928sumeq2dv 12176 . . . 4  |-  ( N  e.  NN  ->  sum_ x  e.  D  sum_ a  e.  ( Base `  (ℤ/n `  N
) ) ( x `
 a )  = 
sum_ x  e.  D  if ( x  e.  {
( 0g `  G
) } ,  ( phi `  N ) ,  0 ) )
3012, 21, 293eqtr3d 2323 . . 3  |-  ( N  e.  NN  ->  sum_ a  e.  ( Base `  (ℤ/n `  N
) ) if ( a  e.  { ( 1r `  (ℤ/n `  N
) ) } , 
( # `  D ) ,  0 )  = 
sum_ x  e.  D  if ( x  e.  {
( 0g `  G
) } ,  ( phi `  N ) ,  0 ) )
31 nnnn0 9972 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  NN0 )
321zncrng 16498 . . . . . . 7  |-  ( N  e.  NN0  ->  (ℤ/n `  N
)  e.  CRing )
33 crngrng 15351 . . . . . . 7  |-  ( (ℤ/n `  N )  e.  CRing  -> 
(ℤ/n `  N )  e.  Ring )
3431, 32, 333syl 18 . . . . . 6  |-  ( N  e.  NN  ->  (ℤ/n `  N
)  e.  Ring )
352, 13rngidcl 15361 . . . . . 6  |-  ( (ℤ/n `  N )  e.  Ring  -> 
( 1r `  (ℤ/n `  N
) )  e.  (
Base `  (ℤ/n `  N ) ) )
3634, 35syl 15 . . . . 5  |-  ( N  e.  NN  ->  ( 1r `  (ℤ/n `  N ) )  e.  ( Base `  (ℤ/n `  N
) ) )
3736snssd 3760 . . . 4  |-  ( N  e.  NN  ->  { ( 1r `  (ℤ/n `  N
) ) }  C_  ( Base `  (ℤ/n `  N ) ) )
38 hashcl 11350 . . . . . 6  |-  ( D  e.  Fin  ->  ( # `
 D )  e. 
NN0 )
39 nn0cn 9975 . . . . . 6  |-  ( (
# `  D )  e.  NN0  ->  ( # `  D
)  e.  CC )
406, 38, 393syl 18 . . . . 5  |-  ( N  e.  NN  ->  ( # `
 D )  e.  CC )
4140ralrimivw 2627 . . . 4  |-  ( N  e.  NN  ->  A. a  e.  { ( 1r `  (ℤ/n `  N ) ) }  ( # `  D
)  e.  CC )
423olcd 382 . . . 4  |-  ( N  e.  NN  ->  (
( Base `  (ℤ/n `  N ) )  C_  ( ZZ>= `  0 )  \/  ( Base `  (ℤ/n `  N
) )  e.  Fin ) )
43 sumss2 12199 . . . 4  |-  ( ( ( { ( 1r
`  (ℤ/n `  N ) ) } 
C_  ( Base `  (ℤ/n `  N
) )  /\  A. a  e.  { ( 1r `  (ℤ/n `  N ) ) }  ( # `  D
)  e.  CC )  /\  ( ( Base `  (ℤ/n `  N ) )  C_  ( ZZ>= `  0 )  \/  ( Base `  (ℤ/n `  N
) )  e.  Fin ) )  ->  sum_ a  e.  { ( 1r `  (ℤ/n `  N ) ) }  ( # `  D
)  =  sum_ a  e.  ( Base `  (ℤ/n `  N
) ) if ( a  e.  { ( 1r `  (ℤ/n `  N
) ) } , 
( # `  D ) ,  0 ) )
4437, 41, 42, 43syl21anc 1181 . . 3  |-  ( N  e.  NN  ->  sum_ a  e.  { ( 1r `  (ℤ/n `  N ) ) }  ( # `  D
)  =  sum_ a  e.  ( Base `  (ℤ/n `  N
) ) if ( a  e.  { ( 1r `  (ℤ/n `  N
) ) } , 
( # `  D ) ,  0 ) )
454dchrabl 20493 . . . . . 6  |-  ( N  e.  NN  ->  G  e.  Abel )
46 ablgrp 15094 . . . . . 6  |-  ( G  e.  Abel  ->  G  e. 
Grp )
475, 22grpidcl 14510 . . . . . 6  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  D )
4845, 46, 473syl 18 . . . . 5  |-  ( N  e.  NN  ->  ( 0g `  G )  e.  D )
4948snssd 3760 . . . 4  |-  ( N  e.  NN  ->  { ( 0g `  G ) }  C_  D )
50 phicl 12837 . . . . . 6  |-  ( N  e.  NN  ->  ( phi `  N )  e.  NN )
5150nncnd 9762 . . . . 5  |-  ( N  e.  NN  ->  ( phi `  N )  e.  CC )
5251ralrimivw 2627 . . . 4  |-  ( N  e.  NN  ->  A. x  e.  { ( 0g `  G ) }  ( phi `  N )  e.  CC )
536olcd 382 . . . 4  |-  ( N  e.  NN  ->  ( D  C_  ( ZZ>= `  0
)  \/  D  e. 
Fin ) )
54 sumss2 12199 . . . 4  |-  ( ( ( { ( 0g
`  G ) } 
C_  D  /\  A. x  e.  { ( 0g `  G ) }  ( phi `  N
)  e.  CC )  /\  ( D  C_  ( ZZ>= `  0 )  \/  D  e.  Fin ) )  ->  sum_ x  e.  { ( 0g `  G ) }  ( phi `  N )  = 
sum_ x  e.  D  if ( x  e.  {
( 0g `  G
) } ,  ( phi `  N ) ,  0 ) )
5549, 52, 53, 54syl21anc 1181 . . 3  |-  ( N  e.  NN  ->  sum_ x  e.  { ( 0g `  G ) }  ( phi `  N )  = 
sum_ x  e.  D  if ( x  e.  {
( 0g `  G
) } ,  ( phi `  N ) ,  0 ) )
5630, 44, 553eqtr4d 2325 . 2  |-  ( N  e.  NN  ->  sum_ a  e.  { ( 1r `  (ℤ/n `  N ) ) }  ( # `  D
)  =  sum_ x  e.  { ( 0g `  G ) }  ( phi `  N ) )
57 eqidd 2284 . . . 4  |-  ( a  =  ( 1r `  (ℤ/n `  N ) )  -> 
( # `  D )  =  ( # `  D
) )
5857sumsn 12213 . . 3  |-  ( ( ( 1r `  (ℤ/n `  N
) )  e.  (
Base `  (ℤ/n `  N ) )  /\  ( # `  D )  e.  CC )  ->  sum_ a  e.  { ( 1r `  (ℤ/n `  N
) ) }  ( # `
 D )  =  ( # `  D
) )
5936, 40, 58syl2anc 642 . 2  |-  ( N  e.  NN  ->  sum_ a  e.  { ( 1r `  (ℤ/n `  N ) ) }  ( # `  D
)  =  ( # `  D ) )
60 eqidd 2284 . . . 4  |-  ( x  =  ( 0g `  G )  ->  ( phi `  N )  =  ( phi `  N
) )
6160sumsn 12213 . . 3  |-  ( ( ( 0g `  G
)  e.  D  /\  ( phi `  N )  e.  CC )  ->  sum_ x  e.  { ( 0g `  G ) }  ( phi `  N )  =  ( phi `  N ) )
6248, 51, 61syl2anc 642 . 2  |-  ( N  e.  NN  ->  sum_ x  e.  { ( 0g `  G ) }  ( phi `  N )  =  ( phi `  N
) )
6356, 59, 623eqtr3d 2323 1  |-  ( N  e.  NN  ->  ( # `
 D )  =  ( phi `  N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543    C_ wss 3152   ifcif 3565   {csn 3640   -->wf 5251   ` cfv 5255   Fincfn 6863   CCcc 8735   0cc0 8737   NNcn 9746   NN0cn0 9965   ZZ>=cuz 10230   #chash 11337   sum_csu 12158   phicphi 12832   Basecbs 13148   0gc0g 13400   Grpcgrp 14362   Abelcabel 15090   Ringcrg 15337   CRingccrg 15338   1rcur 15339  ℤ/nczn 16454  DChrcdchr 20471
This theorem is referenced by:  sumdchr  20511
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-disj 3994  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-tpos 6234  df-rpss 6277  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-omul 6484  df-er 6660  df-ec 6662  df-qs 6666  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-acn 7575  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-ioc 10661  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-fac 11289  df-bc 11316  df-hash 11338  df-word 11409  df-concat 11410  df-s1 11411  df-shft 11562  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-limsup 11945  df-clim 11962  df-rlim 11963  df-sum 12159  df-ef 12349  df-sin 12351  df-cos 12352  df-pi 12354  df-dvds 12532  df-gcd 12686  df-prm 12759  df-phi 12834  df-pc 12890  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-divs 13412  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-mhm 14415  df-submnd 14416  df-grp 14489  df-minusg 14490  df-sbg 14491  df-mulg 14492  df-subg 14618  df-nsg 14619  df-eqg 14620  df-ghm 14681  df-gim 14723  df-ga 14744  df-cntz 14793  df-oppg 14819  df-od 14844  df-gex 14845  df-pgp 14846  df-lsm 14947  df-pj1 14948  df-cmn 15091  df-abl 15092  df-cyg 15165  df-dprd 15233  df-dpj 15234  df-mgp 15326  df-rng 15340  df-cring 15341  df-ur 15342  df-oppr 15405  df-dvdsr 15423  df-unit 15424  df-invr 15454  df-rnghom 15496  df-subrg 15543  df-lmod 15629  df-lss 15690  df-lsp 15729  df-sra 15925  df-rgmod 15926  df-lidl 15927  df-rsp 15928  df-2idl 15984  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-zrh 16455  df-zn 16458  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cld 16756  df-ntr 16757  df-cls 16758  df-nei 16835  df-lp 16868  df-perf 16869  df-cn 16957  df-cnp 16958  df-haus 17043  df-tx 17257  df-hmeo 17446  df-fbas 17520  df-fg 17521  df-fil 17541  df-fm 17633  df-flim 17634  df-flf 17635  df-xms 17885  df-ms 17886  df-tms 17887  df-cncf 18382  df-0p 19025  df-limc 19216  df-dv 19217  df-ply 19570  df-idp 19571  df-coe 19572  df-dgr 19573  df-quot 19671  df-log 19914  df-cxp 19915  df-dchr 20472
  Copyright terms: Public domain W3C validator