MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum Unicode version

Theorem dchrisum 20657
Description: If  n  e.  [ M ,  +oo )  |->  A ( n ) is a positive decreasing function approaching zero, then the infinite sum  sum_ n ,  X
( n ) A ( n ) is convergent, with the partial sum  sum_ n  <_  x ,  X ( n ) A ( n ) within  O ( A ( M ) ) of the limit  T. Lemma 9.4.1 of [Shapiro], p. 377. (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum.g  |-  G  =  (DChr `  N )
rpvmasum.d  |-  D  =  ( Base `  G
)
rpvmasum.1  |-  .1.  =  ( 0g `  G )
dchrisum.b  |-  ( ph  ->  X  e.  D )
dchrisum.n1  |-  ( ph  ->  X  =/=  .1.  )
dchrisum.2  |-  ( n  =  x  ->  A  =  B )
dchrisum.3  |-  ( ph  ->  M  e.  NN )
dchrisum.4  |-  ( (
ph  /\  n  e.  RR+ )  ->  A  e.  RR )
dchrisum.5  |-  ( (
ph  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  ( M  <_  n  /\  n  <_  x ) )  ->  B  <_  A )
dchrisum.6  |-  ( ph  ->  ( n  e.  RR+  |->  A )  ~~> r  0 )
dchrisum.7  |-  F  =  ( n  e.  NN  |->  ( ( X `  ( L `  n ) )  x.  A ) )
Assertion
Ref Expression
dchrisum  |-  ( ph  ->  E. t E. c  e.  ( 0 [,)  +oo ) (  seq  1
(  +  ,  F
)  ~~>  t  /\  A. x  e.  ( M [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  x ) )  -  t ) )  <_ 
( c  x.  B
) ) )
Distinct variable groups:    x, n, c, t,  .1.    F, c, n, t, x    A, c, t, x    N, c, n, t, x    ph, c, n, t, x    B, c, n    n, Z, x    D, c, n, t, x    L, c, n, t, x    M, c, n, x    X, c, n, t, x
Allowed substitution hints:    A( n)    B( x, t)    G( x, t, n, c)    M( t)    Z( t, c)

Proof of Theorem dchrisum
Dummy variables  m  u  i  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzofi 11052 . . 3  |-  ( 0..^ N )  e.  Fin
2 fzofi 11052 . . . . . . 7  |-  ( 0..^ u )  e.  Fin
32a1i 10 . . . . . 6  |-  ( ph  ->  ( 0..^ u )  e.  Fin )
4 rpvmasum.g . . . . . . 7  |-  G  =  (DChr `  N )
5 rpvmasum.z . . . . . . 7  |-  Z  =  (ℤ/n `  N )
6 rpvmasum.d . . . . . . 7  |-  D  =  ( Base `  G
)
7 rpvmasum.l . . . . . . 7  |-  L  =  ( ZRHom `  Z
)
8 dchrisum.b . . . . . . . 8  |-  ( ph  ->  X  e.  D )
98adantr 451 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( 0..^ u ) )  ->  X  e.  D
)
10 elfzoelz 10891 . . . . . . . 8  |-  ( m  e.  ( 0..^ u )  ->  m  e.  ZZ )
1110adantl 452 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( 0..^ u ) )  ->  m  e.  ZZ )
124, 5, 6, 7, 9, 11dchrzrhcl 20500 . . . . . 6  |-  ( (
ph  /\  m  e.  ( 0..^ u ) )  ->  ( X `  ( L `  m ) )  e.  CC )
133, 12fsumcl 12222 . . . . 5  |-  ( ph  -> 
sum_ m  e.  (
0..^ u ) ( X `  ( L `
 m ) )  e.  CC )
1413abscld 11934 . . . 4  |-  ( ph  ->  ( abs `  sum_ m  e.  ( 0..^ u ) ( X `  ( L `  m ) ) )  e.  RR )
1514ralrimivw 2640 . . 3  |-  ( ph  ->  A. u  e.  ( 0..^ N ) ( abs `  sum_ m  e.  ( 0..^ u ) ( X `  ( L `  m )
) )  e.  RR )
16 fimaxre3 9719 . . 3  |-  ( ( ( 0..^ N )  e.  Fin  /\  A. u  e.  ( 0..^ N ) ( abs `  sum_ m  e.  ( 0..^ u ) ( X `  ( L `
 m ) ) )  e.  RR )  ->  E. r  e.  RR  A. u  e.  ( 0..^ N ) ( abs `  sum_ m  e.  ( 0..^ u ) ( X `  ( L `
 m ) ) )  <_  r )
171, 15, 16sylancr 644 . 2  |-  ( ph  ->  E. r  e.  RR  A. u  e.  ( 0..^ N ) ( abs `  sum_ m  e.  ( 0..^ u ) ( X `  ( L `
 m ) ) )  <_  r )
18 rpvmasum.a . . . . . 6  |-  ( ph  ->  N  e.  NN )
1918adantr 451 . . . . 5  |-  ( (
ph  /\  ( r  e.  RR  /\  A. u  e.  ( 0..^ N ) ( abs `  sum_ m  e.  ( 0..^ u ) ( X `  ( L `  m ) ) )  <_  r
) )  ->  N  e.  NN )
20 rpvmasum.1 . . . . 5  |-  .1.  =  ( 0g `  G )
218adantr 451 . . . . 5  |-  ( (
ph  /\  ( r  e.  RR  /\  A. u  e.  ( 0..^ N ) ( abs `  sum_ m  e.  ( 0..^ u ) ( X `  ( L `  m ) ) )  <_  r
) )  ->  X  e.  D )
22 dchrisum.n1 . . . . . 6  |-  ( ph  ->  X  =/=  .1.  )
2322adantr 451 . . . . 5  |-  ( (
ph  /\  ( r  e.  RR  /\  A. u  e.  ( 0..^ N ) ( abs `  sum_ m  e.  ( 0..^ u ) ( X `  ( L `  m ) ) )  <_  r
) )  ->  X  =/=  .1.  )
24 dchrisum.2 . . . . 5  |-  ( n  =  x  ->  A  =  B )
25 dchrisum.3 . . . . . 6  |-  ( ph  ->  M  e.  NN )
2625adantr 451 . . . . 5  |-  ( (
ph  /\  ( r  e.  RR  /\  A. u  e.  ( 0..^ N ) ( abs `  sum_ m  e.  ( 0..^ u ) ( X `  ( L `  m ) ) )  <_  r
) )  ->  M  e.  NN )
27 dchrisum.4 . . . . . 6  |-  ( (
ph  /\  n  e.  RR+ )  ->  A  e.  RR )
2827adantlr 695 . . . . 5  |-  ( ( ( ph  /\  (
r  e.  RR  /\  A. u  e.  ( 0..^ N ) ( abs `  sum_ m  e.  ( 0..^ u ) ( X `  ( L `
 m ) ) )  <_  r )
)  /\  n  e.  RR+ )  ->  A  e.  RR )
29 dchrisum.5 . . . . . 6  |-  ( (
ph  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  ( M  <_  n  /\  n  <_  x ) )  ->  B  <_  A )
30293adant1r 1175 . . . . 5  |-  ( ( ( ph  /\  (
r  e.  RR  /\  A. u  e.  ( 0..^ N ) ( abs `  sum_ m  e.  ( 0..^ u ) ( X `  ( L `
 m ) ) )  <_  r )
)  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  ( M  <_  n  /\  n  <_  x ) )  ->  B  <_  A )
31 dchrisum.6 . . . . . 6  |-  ( ph  ->  ( n  e.  RR+  |->  A )  ~~> r  0 )
3231adantr 451 . . . . 5  |-  ( (
ph  /\  ( r  e.  RR  /\  A. u  e.  ( 0..^ N ) ( abs `  sum_ m  e.  ( 0..^ u ) ( X `  ( L `  m ) ) )  <_  r
) )  ->  (
n  e.  RR+  |->  A )  ~~> r  0 )
33 dchrisum.7 . . . . 5  |-  F  =  ( n  e.  NN  |->  ( ( X `  ( L `  n ) )  x.  A ) )
34 simprl 732 . . . . 5  |-  ( (
ph  /\  ( r  e.  RR  /\  A. u  e.  ( 0..^ N ) ( abs `  sum_ m  e.  ( 0..^ u ) ( X `  ( L `  m ) ) )  <_  r
) )  ->  r  e.  RR )
35 simprr 733 . . . . . 6  |-  ( (
ph  /\  ( r  e.  RR  /\  A. u  e.  ( 0..^ N ) ( abs `  sum_ m  e.  ( 0..^ u ) ( X `  ( L `  m ) ) )  <_  r
) )  ->  A. u  e.  ( 0..^ N ) ( abs `  sum_ m  e.  ( 0..^ u ) ( X `  ( L `  m ) ) )  <_  r
)
36 fveq2 5541 . . . . . . . . . . . 12  |-  ( m  =  n  ->  ( L `  m )  =  ( L `  n ) )
3736fveq2d 5545 . . . . . . . . . . 11  |-  ( m  =  n  ->  ( X `  ( L `  m ) )  =  ( X `  ( L `  n )
) )
3837cbvsumv 12185 . . . . . . . . . 10  |-  sum_ m  e.  ( 0..^ u ) ( X `  ( L `  m )
)  =  sum_ n  e.  ( 0..^ u ) ( X `  ( L `  n )
)
39 oveq2 5882 . . . . . . . . . . 11  |-  ( u  =  i  ->  (
0..^ u )  =  ( 0..^ i ) )
4039sumeq1d 12190 . . . . . . . . . 10  |-  ( u  =  i  ->  sum_ n  e.  ( 0..^ u ) ( X `  ( L `  n )
)  =  sum_ n  e.  ( 0..^ i ) ( X `  ( L `  n )
) )
4138, 40syl5eq 2340 . . . . . . . . 9  |-  ( u  =  i  ->  sum_ m  e.  ( 0..^ u ) ( X `  ( L `  m )
)  =  sum_ n  e.  ( 0..^ i ) ( X `  ( L `  n )
) )
4241fveq2d 5545 . . . . . . . 8  |-  ( u  =  i  ->  ( abs `  sum_ m  e.  ( 0..^ u ) ( X `  ( L `
 m ) ) )  =  ( abs `  sum_ n  e.  ( 0..^ i ) ( X `  ( L `
 n ) ) ) )
4342breq1d 4049 . . . . . . 7  |-  ( u  =  i  ->  (
( abs `  sum_ m  e.  ( 0..^ u ) ( X `  ( L `  m ) ) )  <_  r  <->  ( abs `  sum_ n  e.  ( 0..^ i ) ( X `  ( L `  n )
) )  <_  r
) )
4443cbvralv 2777 . . . . . 6  |-  ( A. u  e.  ( 0..^ N ) ( abs `  sum_ m  e.  ( 0..^ u ) ( X `  ( L `
 m ) ) )  <_  r  <->  A. i  e.  ( 0..^ N ) ( abs `  sum_ n  e.  ( 0..^ i ) ( X `  ( L `  n ) ) )  <_  r
)
4535, 44sylib 188 . . . . 5  |-  ( (
ph  /\  ( r  e.  RR  /\  A. u  e.  ( 0..^ N ) ( abs `  sum_ m  e.  ( 0..^ u ) ( X `  ( L `  m ) ) )  <_  r
) )  ->  A. i  e.  ( 0..^ N ) ( abs `  sum_ n  e.  ( 0..^ i ) ( X `  ( L `  n ) ) )  <_  r
)
465, 7, 19, 4, 6, 20, 21, 23, 24, 26, 28, 30, 32, 33, 34, 45dchrisumlem3 20656 . . . 4  |-  ( (
ph  /\  ( r  e.  RR  /\  A. u  e.  ( 0..^ N ) ( abs `  sum_ m  e.  ( 0..^ u ) ( X `  ( L `  m ) ) )  <_  r
) )  ->  E. t E. c  e.  (
0 [,)  +oo ) (  seq  1 (  +  ,  F )  ~~>  t  /\  A. x  e.  ( M [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  x ) )  -  t ) )  <_ 
( c  x.  B
) ) )
4746expr 598 . . 3  |-  ( (
ph  /\  r  e.  RR )  ->  ( A. u  e.  ( 0..^ N ) ( abs `  sum_ m  e.  ( 0..^ u ) ( X `  ( L `
 m ) ) )  <_  r  ->  E. t E. c  e.  ( 0 [,)  +oo ) (  seq  1
(  +  ,  F
)  ~~>  t  /\  A. x  e.  ( M [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  x ) )  -  t ) )  <_ 
( c  x.  B
) ) ) )
4847rexlimdva 2680 . 2  |-  ( ph  ->  ( E. r  e.  RR  A. u  e.  ( 0..^ N ) ( abs `  sum_ m  e.  ( 0..^ u ) ( X `  ( L `  m ) ) )  <_  r  ->  E. t E. c  e.  ( 0 [,)  +oo ) (  seq  1
(  +  ,  F
)  ~~>  t  /\  A. x  e.  ( M [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  x ) )  -  t ) )  <_ 
( c  x.  B
) ) ) )
4917, 48mpd 14 1  |-  ( ph  ->  E. t E. c  e.  ( 0 [,)  +oo ) (  seq  1
(  +  ,  F
)  ~~>  t  /\  A. x  e.  ( M [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  x ) )  -  t ) )  <_ 
( c  x.  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934   E.wex 1531    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   E.wrex 2557   class class class wbr 4039    e. cmpt 4093   ` cfv 5271  (class class class)co 5874   Fincfn 6879   RRcr 8752   0cc0 8753   1c1 8754    + caddc 8756    x. cmul 8758    +oocpnf 8880    <_ cle 8884    - cmin 9053   NNcn 9762   ZZcz 10040   RR+crp 10370   [,)cico 10674  ..^cfzo 10886   |_cfl 10940    seq cseq 11062   abscabs 11735    ~~> cli 11974    ~~> r crli 11975   sum_csu 12174   Basecbs 13164   0gc0g 13416   ZRHomczrh 16467  ℤ/nczn 16470  DChrcdchr 20487
This theorem is referenced by:  dchrmusumlema  20658  dchrvmasumlema  20665  dchrisum0lema  20679
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832  ax-mulf 8833
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-tpos 6250  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-ec 6678  df-qs 6682  df-map 6790  df-pm 6791  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-oi 7241  df-card 7588  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-rp 10371  df-ico 10678  df-fz 10799  df-fzo 10887  df-fl 10941  df-mod 10990  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-limsup 11961  df-clim 11978  df-rlim 11979  df-sum 12175  df-dvds 12548  df-gcd 12702  df-phi 12850  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-starv 13239  df-sca 13240  df-vsca 13241  df-tset 13243  df-ple 13244  df-ds 13246  df-0g 13420  df-imas 13427  df-divs 13428  df-mnd 14383  df-mhm 14431  df-grp 14505  df-minusg 14506  df-sbg 14507  df-mulg 14508  df-subg 14634  df-nsg 14635  df-eqg 14636  df-ghm 14697  df-cmn 15107  df-abl 15108  df-mgp 15342  df-rng 15356  df-cring 15357  df-ur 15358  df-oppr 15421  df-dvdsr 15439  df-unit 15440  df-invr 15470  df-rnghom 15512  df-subrg 15559  df-lmod 15645  df-lss 15706  df-lsp 15745  df-sra 15941  df-rgmod 15942  df-lidl 15943  df-rsp 15944  df-2idl 16000  df-cnfld 16394  df-zrh 16471  df-zn 16474  df-dchr 20488
  Copyright terms: Public domain W3C validator