MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum Unicode version

Theorem dchrisum 21053
Description: If  n  e.  [ M ,  +oo )  |->  A ( n ) is a positive decreasing function approaching zero, then the infinite sum  sum_ n ,  X
( n ) A ( n ) is convergent, with the partial sum  sum_ n  <_  x ,  X ( n ) A ( n ) within  O ( A ( M ) ) of the limit  T. Lemma 9.4.1 of [Shapiro], p. 377. (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum.g  |-  G  =  (DChr `  N )
rpvmasum.d  |-  D  =  ( Base `  G
)
rpvmasum.1  |-  .1.  =  ( 0g `  G )
dchrisum.b  |-  ( ph  ->  X  e.  D )
dchrisum.n1  |-  ( ph  ->  X  =/=  .1.  )
dchrisum.2  |-  ( n  =  x  ->  A  =  B )
dchrisum.3  |-  ( ph  ->  M  e.  NN )
dchrisum.4  |-  ( (
ph  /\  n  e.  RR+ )  ->  A  e.  RR )
dchrisum.5  |-  ( (
ph  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  ( M  <_  n  /\  n  <_  x ) )  ->  B  <_  A )
dchrisum.6  |-  ( ph  ->  ( n  e.  RR+  |->  A )  ~~> r  0 )
dchrisum.7  |-  F  =  ( n  e.  NN  |->  ( ( X `  ( L `  n ) )  x.  A ) )
Assertion
Ref Expression
dchrisum  |-  ( ph  ->  E. t E. c  e.  ( 0 [,)  +oo ) (  seq  1
(  +  ,  F
)  ~~>  t  /\  A. x  e.  ( M [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  x ) )  -  t ) )  <_ 
( c  x.  B
) ) )
Distinct variable groups:    x, n, c, t,  .1.    F, c, n, t, x    A, c, t, x    N, c, n, t, x    ph, c, n, t, x    B, c, n    n, Z, x    D, c, n, t, x    L, c, n, t, x    M, c, n, x    X, c, n, t, x
Allowed substitution hints:    A( n)    B( x, t)    G( x, t, n, c)    M( t)    Z( t, c)

Proof of Theorem dchrisum
Dummy variables  m  u  i  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzofi 11240 . . 3  |-  ( 0..^ N )  e.  Fin
2 fzofi 11240 . . . . . . 7  |-  ( 0..^ u )  e.  Fin
32a1i 11 . . . . . 6  |-  ( ph  ->  ( 0..^ u )  e.  Fin )
4 rpvmasum.g . . . . . . 7  |-  G  =  (DChr `  N )
5 rpvmasum.z . . . . . . 7  |-  Z  =  (ℤ/n `  N )
6 rpvmasum.d . . . . . . 7  |-  D  =  ( Base `  G
)
7 rpvmasum.l . . . . . . 7  |-  L  =  ( ZRHom `  Z
)
8 dchrisum.b . . . . . . . 8  |-  ( ph  ->  X  e.  D )
98adantr 452 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( 0..^ u ) )  ->  X  e.  D
)
10 elfzoelz 11070 . . . . . . . 8  |-  ( m  e.  ( 0..^ u )  ->  m  e.  ZZ )
1110adantl 453 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( 0..^ u ) )  ->  m  e.  ZZ )
124, 5, 6, 7, 9, 11dchrzrhcl 20896 . . . . . 6  |-  ( (
ph  /\  m  e.  ( 0..^ u ) )  ->  ( X `  ( L `  m ) )  e.  CC )
133, 12fsumcl 12454 . . . . 5  |-  ( ph  -> 
sum_ m  e.  (
0..^ u ) ( X `  ( L `
 m ) )  e.  CC )
1413abscld 12165 . . . 4  |-  ( ph  ->  ( abs `  sum_ m  e.  ( 0..^ u ) ( X `  ( L `  m ) ) )  e.  RR )
1514ralrimivw 2733 . . 3  |-  ( ph  ->  A. u  e.  ( 0..^ N ) ( abs `  sum_ m  e.  ( 0..^ u ) ( X `  ( L `  m )
) )  e.  RR )
16 fimaxre3 9889 . . 3  |-  ( ( ( 0..^ N )  e.  Fin  /\  A. u  e.  ( 0..^ N ) ( abs `  sum_ m  e.  ( 0..^ u ) ( X `  ( L `
 m ) ) )  e.  RR )  ->  E. r  e.  RR  A. u  e.  ( 0..^ N ) ( abs `  sum_ m  e.  ( 0..^ u ) ( X `  ( L `
 m ) ) )  <_  r )
171, 15, 16sylancr 645 . 2  |-  ( ph  ->  E. r  e.  RR  A. u  e.  ( 0..^ N ) ( abs `  sum_ m  e.  ( 0..^ u ) ( X `  ( L `
 m ) ) )  <_  r )
18 rpvmasum.a . . . 4  |-  ( ph  ->  N  e.  NN )
1918adantr 452 . . 3  |-  ( (
ph  /\  ( r  e.  RR  /\  A. u  e.  ( 0..^ N ) ( abs `  sum_ m  e.  ( 0..^ u ) ( X `  ( L `  m ) ) )  <_  r
) )  ->  N  e.  NN )
20 rpvmasum.1 . . 3  |-  .1.  =  ( 0g `  G )
218adantr 452 . . 3  |-  ( (
ph  /\  ( r  e.  RR  /\  A. u  e.  ( 0..^ N ) ( abs `  sum_ m  e.  ( 0..^ u ) ( X `  ( L `  m ) ) )  <_  r
) )  ->  X  e.  D )
22 dchrisum.n1 . . . 4  |-  ( ph  ->  X  =/=  .1.  )
2322adantr 452 . . 3  |-  ( (
ph  /\  ( r  e.  RR  /\  A. u  e.  ( 0..^ N ) ( abs `  sum_ m  e.  ( 0..^ u ) ( X `  ( L `  m ) ) )  <_  r
) )  ->  X  =/=  .1.  )
24 dchrisum.2 . . 3  |-  ( n  =  x  ->  A  =  B )
25 dchrisum.3 . . . 4  |-  ( ph  ->  M  e.  NN )
2625adantr 452 . . 3  |-  ( (
ph  /\  ( r  e.  RR  /\  A. u  e.  ( 0..^ N ) ( abs `  sum_ m  e.  ( 0..^ u ) ( X `  ( L `  m ) ) )  <_  r
) )  ->  M  e.  NN )
27 dchrisum.4 . . . 4  |-  ( (
ph  /\  n  e.  RR+ )  ->  A  e.  RR )
2827adantlr 696 . . 3  |-  ( ( ( ph  /\  (
r  e.  RR  /\  A. u  e.  ( 0..^ N ) ( abs `  sum_ m  e.  ( 0..^ u ) ( X `  ( L `
 m ) ) )  <_  r )
)  /\  n  e.  RR+ )  ->  A  e.  RR )
29 dchrisum.5 . . . 4  |-  ( (
ph  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  ( M  <_  n  /\  n  <_  x ) )  ->  B  <_  A )
30293adant1r 1177 . . 3  |-  ( ( ( ph  /\  (
r  e.  RR  /\  A. u  e.  ( 0..^ N ) ( abs `  sum_ m  e.  ( 0..^ u ) ( X `  ( L `
 m ) ) )  <_  r )
)  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  ( M  <_  n  /\  n  <_  x ) )  ->  B  <_  A )
31 dchrisum.6 . . . 4  |-  ( ph  ->  ( n  e.  RR+  |->  A )  ~~> r  0 )
3231adantr 452 . . 3  |-  ( (
ph  /\  ( r  e.  RR  /\  A. u  e.  ( 0..^ N ) ( abs `  sum_ m  e.  ( 0..^ u ) ( X `  ( L `  m ) ) )  <_  r
) )  ->  (
n  e.  RR+  |->  A )  ~~> r  0 )
33 dchrisum.7 . . 3  |-  F  =  ( n  e.  NN  |->  ( ( X `  ( L `  n ) )  x.  A ) )
34 simprl 733 . . 3  |-  ( (
ph  /\  ( r  e.  RR  /\  A. u  e.  ( 0..^ N ) ( abs `  sum_ m  e.  ( 0..^ u ) ( X `  ( L `  m ) ) )  <_  r
) )  ->  r  e.  RR )
35 simprr 734 . . . 4  |-  ( (
ph  /\  ( r  e.  RR  /\  A. u  e.  ( 0..^ N ) ( abs `  sum_ m  e.  ( 0..^ u ) ( X `  ( L `  m ) ) )  <_  r
) )  ->  A. u  e.  ( 0..^ N ) ( abs `  sum_ m  e.  ( 0..^ u ) ( X `  ( L `  m ) ) )  <_  r
)
36 fveq2 5668 . . . . . . . . . 10  |-  ( m  =  n  ->  ( L `  m )  =  ( L `  n ) )
3736fveq2d 5672 . . . . . . . . 9  |-  ( m  =  n  ->  ( X `  ( L `  m ) )  =  ( X `  ( L `  n )
) )
3837cbvsumv 12417 . . . . . . . 8  |-  sum_ m  e.  ( 0..^ u ) ( X `  ( L `  m )
)  =  sum_ n  e.  ( 0..^ u ) ( X `  ( L `  n )
)
39 oveq2 6028 . . . . . . . . 9  |-  ( u  =  i  ->  (
0..^ u )  =  ( 0..^ i ) )
4039sumeq1d 12422 . . . . . . . 8  |-  ( u  =  i  ->  sum_ n  e.  ( 0..^ u ) ( X `  ( L `  n )
)  =  sum_ n  e.  ( 0..^ i ) ( X `  ( L `  n )
) )
4138, 40syl5eq 2431 . . . . . . 7  |-  ( u  =  i  ->  sum_ m  e.  ( 0..^ u ) ( X `  ( L `  m )
)  =  sum_ n  e.  ( 0..^ i ) ( X `  ( L `  n )
) )
4241fveq2d 5672 . . . . . 6  |-  ( u  =  i  ->  ( abs `  sum_ m  e.  ( 0..^ u ) ( X `  ( L `
 m ) ) )  =  ( abs `  sum_ n  e.  ( 0..^ i ) ( X `  ( L `
 n ) ) ) )
4342breq1d 4163 . . . . 5  |-  ( u  =  i  ->  (
( abs `  sum_ m  e.  ( 0..^ u ) ( X `  ( L `  m ) ) )  <_  r  <->  ( abs `  sum_ n  e.  ( 0..^ i ) ( X `  ( L `  n )
) )  <_  r
) )
4443cbvralv 2875 . . . 4  |-  ( A. u  e.  ( 0..^ N ) ( abs `  sum_ m  e.  ( 0..^ u ) ( X `  ( L `
 m ) ) )  <_  r  <->  A. i  e.  ( 0..^ N ) ( abs `  sum_ n  e.  ( 0..^ i ) ( X `  ( L `  n ) ) )  <_  r
)
4535, 44sylib 189 . . 3  |-  ( (
ph  /\  ( r  e.  RR  /\  A. u  e.  ( 0..^ N ) ( abs `  sum_ m  e.  ( 0..^ u ) ( X `  ( L `  m ) ) )  <_  r
) )  ->  A. i  e.  ( 0..^ N ) ( abs `  sum_ n  e.  ( 0..^ i ) ( X `  ( L `  n ) ) )  <_  r
)
465, 7, 19, 4, 6, 20, 21, 23, 24, 26, 28, 30, 32, 33, 34, 45dchrisumlem3 21052 . 2  |-  ( (
ph  /\  ( r  e.  RR  /\  A. u  e.  ( 0..^ N ) ( abs `  sum_ m  e.  ( 0..^ u ) ( X `  ( L `  m ) ) )  <_  r
) )  ->  E. t E. c  e.  (
0 [,)  +oo ) (  seq  1 (  +  ,  F )  ~~>  t  /\  A. x  e.  ( M [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  x ) )  -  t ) )  <_ 
( c  x.  B
) ) )
4717, 46rexlimddv 2777 1  |-  ( ph  ->  E. t E. c  e.  ( 0 [,)  +oo ) (  seq  1
(  +  ,  F
)  ~~>  t  /\  A. x  e.  ( M [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  x ) )  -  t ) )  <_ 
( c  x.  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936   E.wex 1547    = wceq 1649    e. wcel 1717    =/= wne 2550   A.wral 2649   E.wrex 2650   class class class wbr 4153    e. cmpt 4207   ` cfv 5394  (class class class)co 6020   Fincfn 7045   RRcr 8922   0cc0 8923   1c1 8924    + caddc 8926    x. cmul 8928    +oocpnf 9050    <_ cle 9054    - cmin 9223   NNcn 9932   ZZcz 10214   RR+crp 10544   [,)cico 10850  ..^cfzo 11065   |_cfl 11128    seq cseq 11250   abscabs 11966    ~~> cli 12205    ~~> r crli 12206   sum_csu 12406   Basecbs 13396   0gc0g 13650   ZRHomczrh 16701  ℤ/nczn 16704  DChrcdchr 20883
This theorem is referenced by:  dchrmusumlema  21054  dchrvmasumlema  21061  dchrisum0lema  21075
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-inf2 7529  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000  ax-pre-sup 9001  ax-addf 9002  ax-mulf 9003
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-se 4483  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-isom 5403  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-of 6244  df-1st 6288  df-2nd 6289  df-tpos 6415  df-riota 6485  df-recs 6569  df-rdg 6604  df-1o 6660  df-oadd 6664  df-er 6841  df-ec 6843  df-qs 6847  df-map 6956  df-pm 6957  df-en 7046  df-dom 7047  df-sdom 7048  df-fin 7049  df-sup 7381  df-oi 7412  df-card 7759  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-div 9610  df-nn 9933  df-2 9990  df-3 9991  df-4 9992  df-5 9993  df-6 9994  df-7 9995  df-8 9996  df-9 9997  df-10 9998  df-n0 10154  df-z 10215  df-dec 10315  df-uz 10421  df-rp 10545  df-ico 10854  df-fz 10976  df-fzo 11066  df-fl 11129  df-mod 11178  df-seq 11251  df-exp 11310  df-hash 11546  df-cj 11831  df-re 11832  df-im 11833  df-sqr 11967  df-abs 11968  df-limsup 12192  df-clim 12209  df-rlim 12210  df-sum 12407  df-dvds 12780  df-gcd 12934  df-phi 13082  df-struct 13398  df-ndx 13399  df-slot 13400  df-base 13401  df-sets 13402  df-ress 13403  df-plusg 13469  df-mulr 13470  df-starv 13471  df-sca 13472  df-vsca 13473  df-tset 13475  df-ple 13476  df-ds 13478  df-unif 13479  df-0g 13654  df-imas 13661  df-divs 13662  df-mnd 14617  df-mhm 14665  df-grp 14739  df-minusg 14740  df-sbg 14741  df-mulg 14742  df-subg 14868  df-nsg 14869  df-eqg 14870  df-ghm 14931  df-cmn 15341  df-abl 15342  df-mgp 15576  df-rng 15590  df-cring 15591  df-ur 15592  df-oppr 15655  df-dvdsr 15673  df-unit 15674  df-invr 15704  df-rnghom 15746  df-subrg 15793  df-lmod 15879  df-lss 15936  df-lsp 15975  df-sra 16171  df-rgmod 16172  df-lidl 16173  df-rsp 16174  df-2idl 16230  df-cnfld 16627  df-zrh 16705  df-zn 16708  df-dchr 20884
  Copyright terms: Public domain W3C validator