MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0 Unicode version

Theorem dchrisum0 20631
Description: The sum  sum_ n  e.  NN ,  X ( n )  /  n is nonzero for all non-principal Dirichlet characters (i.e. the assumption  X  e.  W is contradictory). This is the key result that allows us to eliminate the conditionals from dchrmusum2 20605 and dchrvmasumif 20614. Lemma 9.4.4 of [Shapiro], p. 382. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum2.g  |-  G  =  (DChr `  N )
rpvmasum2.d  |-  D  =  ( Base `  G
)
rpvmasum2.1  |-  .1.  =  ( 0g `  G )
rpvmasum2.w  |-  W  =  { y  e.  ( D  \  {  .1.  } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 }
dchrisum0.b  |-  ( ph  ->  X  e.  W )
Assertion
Ref Expression
dchrisum0  |-  -.  ph
Distinct variable groups:    y, m,  .1.    m, N, y    ph, m    m, Z, y    D, m, y    m, L, y   
m, X, y
Allowed substitution hints:    ph( y)    G( y, m)    W( y, m)

Proof of Theorem dchrisum0
StepHypRef Expression
1 rpvmasum.z . 2  |-  Z  =  (ℤ/n `  N )
2 rpvmasum.l . 2  |-  L  =  ( ZRHom `  Z
)
3 rpvmasum.a . 2  |-  ( ph  ->  N  e.  NN )
4 rpvmasum2.g . 2  |-  G  =  (DChr `  N )
5 rpvmasum2.d . 2  |-  D  =  ( Base `  G
)
6 rpvmasum2.1 . 2  |-  .1.  =  ( 0g `  G )
7 eqid 2258 . 2  |-  ( b  e.  NN  |->  sum_ y  e.  { i  e.  NN  |  i  ||  b }  ( X `  ( L `  y )
) )  =  ( b  e.  NN  |->  sum_ y  e.  { i  e.  NN  |  i 
||  b }  ( X `  ( L `  y ) ) )
8 rpvmasum2.w . . . . 5  |-  W  =  { y  e.  ( D  \  {  .1.  } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 }
9 ssrab2 3233 . . . . 5  |-  { y  e.  ( D  \  {  .1.  } )  | 
sum_ m  e.  NN  ( ( y `  ( L `  m ) )  /  m )  =  0 }  C_  ( D  \  {  .1.  } )
108, 9eqsstri 3183 . . . 4  |-  W  C_  ( D  \  {  .1.  } )
11 difss 3278 . . . 4  |-  ( D 
\  {  .1.  }
)  C_  D
1210, 11sstri 3163 . . 3  |-  W  C_  D
13 dchrisum0.b . . 3  |-  ( ph  ->  X  e.  W )
1412, 13sseldi 3153 . 2  |-  ( ph  ->  X  e.  D )
151, 2, 3, 4, 5, 6, 8, 13dchrisum0re 20624 . 2  |-  ( ph  ->  X : ( Base `  Z ) --> RR )
16 fveq2 5458 . . . . . . . 8  |-  ( k  =  ( m  x.  d )  ->  ( sqr `  k )  =  ( sqr `  (
m  x.  d ) ) )
1716oveq2d 5808 . . . . . . 7  |-  ( k  =  ( m  x.  d )  ->  (
( X `  ( L `  m )
)  /  ( sqr `  k ) )  =  ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )
18 rpre 10327 . . . . . . . 8  |-  ( x  e.  RR+  ->  x  e.  RR )
1918adantl 454 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR )
2014ad3antrrr 713 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  {
i  e.  NN  | 
i  ||  k }
)  ->  X  e.  D )
21 ssrab2 3233 . . . . . . . . . . . . 13  |-  { i  e.  NN  |  i 
||  k }  C_  NN
2221sseli 3151 . . . . . . . . . . . 12  |-  ( m  e.  { i  e.  NN  |  i  ||  k }  ->  m  e.  NN )
2322nnzd 10083 . . . . . . . . . . 11  |-  ( m  e.  { i  e.  NN  |  i  ||  k }  ->  m  e.  ZZ )
2423adantl 454 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  {
i  e.  NN  | 
i  ||  k }
)  ->  m  e.  ZZ )
254, 1, 5, 2, 20, 24dchrzrhcl 20446 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  {
i  e.  NN  | 
i  ||  k }
)  ->  ( X `  ( L `  m
) )  e.  CC )
26 elfznn 10785 . . . . . . . . . . . . . 14  |-  ( k  e.  ( 1 ... ( |_ `  x
) )  ->  k  e.  NN )
2726adantl 454 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  k  e.  NN )
2827nnrpd 10356 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  k  e.  RR+ )
2928rpsqrcld 11859 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  k )  e.  RR+ )
3029rpcnd 10359 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  k )  e.  CC )
3130adantr 453 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  {
i  e.  NN  | 
i  ||  k }
)  ->  ( sqr `  k )  e.  CC )
3229rpne0d 10362 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  k )  =/=  0
)
3332adantr 453 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  {
i  e.  NN  | 
i  ||  k }
)  ->  ( sqr `  k )  =/=  0
)
3425, 31, 33divcld 9504 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  {
i  e.  NN  | 
i  ||  k }
)  ->  ( ( X `  ( L `  m ) )  / 
( sqr `  k
) )  e.  CC )
3534anasss 631 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
k  e.  ( 1 ... ( |_ `  x ) )  /\  m  e.  { i  e.  NN  |  i  ||  k } ) )  -> 
( ( X `  ( L `  m ) )  /  ( sqr `  k ) )  e.  CC )
3617, 19, 35dvdsflsumcom 20390 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) )
sum_ m  e.  { i  e.  NN  |  i 
||  k }  (
( X `  ( L `  m )
)  /  ( sqr `  k ) )  = 
sum_ m  e.  (
1 ... ( |_ `  x ) ) sum_ d  e.  ( 1 ... ( |_ `  ( x  /  m
) ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  ( m  x.  d
) ) ) )
371, 2, 3, 4, 5, 6, 7dchrisum0fval 20616 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
( b  e.  NN  |->  sum_ y  e.  { i  e.  NN  |  i 
||  b }  ( X `  ( L `  y ) ) ) `
 k )  = 
sum_ m  e.  { i  e.  NN  |  i 
||  k }  ( X `  ( L `  m ) ) )
3827, 37syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
b  e.  NN  |->  sum_ y  e.  { i  e.  NN  |  i 
||  b }  ( X `  ( L `  y ) ) ) `
 k )  = 
sum_ m  e.  { i  e.  NN  |  i 
||  k }  ( X `  ( L `  m ) ) )
3938oveq1d 5807 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( b  e.  NN  |->  sum_ y  e.  { i  e.  NN  |  i 
||  b }  ( X `  ( L `  y ) ) ) `
 k )  / 
( sqr `  k
) )  =  (
sum_ m  e.  { i  e.  NN  |  i 
||  k }  ( X `  ( L `  m ) )  / 
( sqr `  k
) ) )
40 fzfid 11001 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1 ... k )  e. 
Fin )
41 sgmss 20306 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  { i  e.  NN  |  i 
||  k }  C_  ( 1 ... k
) )
4227, 41syl 17 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  { i  e.  NN  |  i  ||  k }  C_  ( 1 ... k ) )
43 ssfi 7051 . . . . . . . . . 10  |-  ( ( ( 1 ... k
)  e.  Fin  /\  { i  e.  NN  | 
i  ||  k }  C_  ( 1 ... k
) )  ->  { i  e.  NN  |  i 
||  k }  e.  Fin )
4440, 42, 43syl2anc 645 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  { i  e.  NN  |  i  ||  k }  e.  Fin )
4544, 30, 25, 32fsumdivc 12213 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ m  e.  { i  e.  NN  |  i  ||  k }  ( X `  ( L `  m
) )  /  ( sqr `  k ) )  =  sum_ m  e.  {
i  e.  NN  | 
i  ||  k } 
( ( X `  ( L `  m ) )  /  ( sqr `  k ) ) )
4639, 45eqtrd 2290 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( b  e.  NN  |->  sum_ y  e.  { i  e.  NN  |  i 
||  b }  ( X `  ( L `  y ) ) ) `
 k )  / 
( sqr `  k
) )  =  sum_ m  e.  { i  e.  NN  |  i  ||  k }  ( ( X `  ( L `  m ) )  / 
( sqr `  k
) ) )
4746sumeq2dv 12141 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( ( b  e.  NN  |->  sum_ y  e.  { i  e.  NN  |  i  ||  b }  ( X `  ( L `  y )
) ) `  k
)  /  ( sqr `  k ) )  = 
sum_ k  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  { i  e.  NN  |  i 
||  k }  (
( X `  ( L `  m )
)  /  ( sqr `  k ) ) )
48 rprege0 10335 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( x  e.  RR  /\  0  <_  x ) )
4948adantl 454 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x  e.  RR  /\  0  <_  x ) )
50 resqrth 11706 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  0  <_  x )  -> 
( ( sqr `  x
) ^ 2 )  =  x )
5149, 50syl 17 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( sqr `  x ) ^
2 )  =  x )
5251fveq2d 5462 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( |_ `  ( ( sqr `  x
) ^ 2 ) )  =  ( |_
`  x ) )
5352oveq2d 5808 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 1 ... ( |_ `  ( ( sqr `  x
) ^ 2 ) ) )  =  ( 1 ... ( |_
`  x ) ) )
5451oveq1d 5807 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
( sqr `  x
) ^ 2 )  /  m )  =  ( x  /  m
) )
5554fveq2d 5462 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( |_ `  ( ( ( sqr `  x ) ^ 2 )  /  m ) )  =  ( |_
`  ( x  /  m ) ) )
5655oveq2d 5808 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 1 ... ( |_ `  ( ( ( sqr `  x ) ^ 2 )  /  m ) ) )  =  ( 1 ... ( |_
`  ( x  /  m ) ) ) )
5756sumeq1d 12139 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ d  e.  ( 1 ... ( |_ `  ( ( ( sqr `  x ) ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) )  = 
sum_ d  e.  ( 1 ... ( |_
`  ( x  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )
5857adantr 453 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( ( sqr `  x ) ^ 2 ) ) ) )  ->  sum_ d  e.  ( 1 ... ( |_
`  ( ( ( sqr `  x ) ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) )  = 
sum_ d  e.  ( 1 ... ( |_
`  ( x  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )
5953, 58sumeq12dv 12144 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( ( sqr `  x ) ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( ( sqr `  x ) ^ 2 )  /  m ) ) ) ( ( X `  ( L `
 m ) )  /  ( sqr `  (
m  x.  d ) ) )  =  sum_ m  e.  ( 1 ... ( |_ `  x
) ) sum_ d  e.  ( 1 ... ( |_ `  ( x  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )
6036, 47, 593eqtr4d 2300 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( ( b  e.  NN  |->  sum_ y  e.  { i  e.  NN  |  i  ||  b }  ( X `  ( L `  y )
) ) `  k
)  /  ( sqr `  k ) )  = 
sum_ m  e.  (
1 ... ( |_ `  ( ( sqr `  x
) ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( ( sqr `  x ) ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )
6160mpteq2dva 4080 . . . 4  |-  ( ph  ->  ( x  e.  RR+  |->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( ( b  e.  NN  |->  sum_ y  e.  {
i  e.  NN  | 
i  ||  b } 
( X `  ( L `  y )
) ) `  k
)  /  ( sqr `  k ) ) )  =  ( x  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_
`  ( ( sqr `  x ) ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( ( sqr `  x ) ^ 2 )  /  m ) ) ) ( ( X `  ( L `
 m ) )  /  ( sqr `  (
m  x.  d ) ) ) ) )
62 rpsqrcl 11715 . . . . . 6  |-  ( x  e.  RR+  ->  ( sqr `  x )  e.  RR+ )
6362adantl 454 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sqr `  x )  e.  RR+ )
64 eqidd 2259 . . . . 5  |-  ( ph  ->  ( x  e.  RR+  |->  ( sqr `  x ) )  =  ( x  e.  RR+  |->  ( sqr `  x ) ) )
65 eqidd 2259 . . . . 5  |-  ( ph  ->  ( z  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  ( z ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( z ^
2 )  /  m
) ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  ( m  x.  d
) ) ) )  =  ( z  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_
`  ( z ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( z ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) ) )
66 oveq1 5799 . . . . . . . 8  |-  ( z  =  ( sqr `  x
)  ->  ( z ^ 2 )  =  ( ( sqr `  x
) ^ 2 ) )
6766fveq2d 5462 . . . . . . 7  |-  ( z  =  ( sqr `  x
)  ->  ( |_ `  ( z ^ 2 ) )  =  ( |_ `  ( ( sqr `  x ) ^ 2 ) ) )
6867oveq2d 5808 . . . . . 6  |-  ( z  =  ( sqr `  x
)  ->  ( 1 ... ( |_ `  ( z ^ 2 ) ) )  =  ( 1 ... ( |_ `  ( ( sqr `  x ) ^ 2 ) ) ) )
6966oveq1d 5807 . . . . . . . . . 10  |-  ( z  =  ( sqr `  x
)  ->  ( (
z ^ 2 )  /  m )  =  ( ( ( sqr `  x ) ^ 2 )  /  m ) )
7069fveq2d 5462 . . . . . . . . 9  |-  ( z  =  ( sqr `  x
)  ->  ( |_ `  ( ( z ^
2 )  /  m
) )  =  ( |_ `  ( ( ( sqr `  x
) ^ 2 )  /  m ) ) )
7170oveq2d 5808 . . . . . . . 8  |-  ( z  =  ( sqr `  x
)  ->  ( 1 ... ( |_ `  ( ( z ^
2 )  /  m
) ) )  =  ( 1 ... ( |_ `  ( ( ( sqr `  x ) ^ 2 )  /  m ) ) ) )
7271sumeq1d 12139 . . . . . . 7  |-  ( z  =  ( sqr `  x
)  ->  sum_ d  e.  ( 1 ... ( |_ `  ( ( z ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) )  = 
sum_ d  e.  ( 1 ... ( |_
`  ( ( ( sqr `  x ) ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )
7372adantr 453 . . . . . 6  |-  ( ( z  =  ( sqr `  x )  /\  m  e.  ( 1 ... ( |_ `  ( z ^
2 ) ) ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  ( ( z ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) )  = 
sum_ d  e.  ( 1 ... ( |_
`  ( ( ( sqr `  x ) ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )
7468, 73sumeq12dv 12144 . . . . 5  |-  ( z  =  ( sqr `  x
)  ->  sum_ m  e.  ( 1 ... ( |_ `  ( z ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( z ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) )  = 
sum_ m  e.  (
1 ... ( |_ `  ( ( sqr `  x
) ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( ( sqr `  x ) ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )
7563, 64, 65, 74fmptco 5625 . . . 4  |-  ( ph  ->  ( ( z  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_
`  ( z ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( z ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )  o.  ( x  e.  RR+  |->  ( sqr `  x
) ) )  =  ( x  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  ( ( sqr `  x
) ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( ( sqr `  x ) ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) ) )
7661, 75eqtr4d 2293 . . 3  |-  ( ph  ->  ( x  e.  RR+  |->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( ( b  e.  NN  |->  sum_ y  e.  {
i  e.  NN  | 
i  ||  b } 
( X `  ( L `  y )
) ) `  k
)  /  ( sqr `  k ) ) )  =  ( ( z  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_ `  ( z ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( z ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )  o.  ( x  e.  RR+  |->  ( sqr `  x
) ) ) )
77 eqid 2258 . . . . . . . 8  |-  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  /  ( sqr `  a
) ) )  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  ( sqr `  a ) ) )
781, 2, 3, 4, 5, 6, 8, 13, 77dchrisum0lema 20625 . . . . . . 7  |-  ( ph  ->  E. t E. c  e.  ( 0 [,)  +oo ) (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  ( sqr `  a ) ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  ( sqr `  a ) ) ) ) `  ( |_
`  y ) )  -  t ) )  <_  ( c  / 
( sqr `  y
) ) ) )
793adantr 453 . . . . . . . . . . 11  |-  ( (
ph  /\  ( c  e.  ( 0 [,)  +oo )  /\  (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  ( sqr `  a ) ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  ( sqr `  a ) ) ) ) `  ( |_
`  y ) )  -  t ) )  <_  ( c  / 
( sqr `  y
) ) ) ) )  ->  N  e.  NN )
8013adantr 453 . . . . . . . . . . 11  |-  ( (
ph  /\  ( c  e.  ( 0 [,)  +oo )  /\  (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  ( sqr `  a ) ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  ( sqr `  a ) ) ) ) `  ( |_
`  y ) )  -  t ) )  <_  ( c  / 
( sqr `  y
) ) ) ) )  ->  X  e.  W )
81 simprl 735 . . . . . . . . . . 11  |-  ( (
ph  /\  ( c  e.  ( 0 [,)  +oo )  /\  (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  ( sqr `  a ) ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  ( sqr `  a ) ) ) ) `  ( |_
`  y ) )  -  t ) )  <_  ( c  / 
( sqr `  y
) ) ) ) )  ->  c  e.  ( 0 [,)  +oo ) )
82 simprrl 743 . . . . . . . . . . 11  |-  ( (
ph  /\  ( c  e.  ( 0 [,)  +oo )  /\  (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  ( sqr `  a ) ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  ( sqr `  a ) ) ) ) `  ( |_
`  y ) )  -  t ) )  <_  ( c  / 
( sqr `  y
) ) ) ) )  ->  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  ( sqr `  a ) ) ) )  ~~>  t )
83 simprrr 744 . . . . . . . . . . 11  |-  ( (
ph  /\  ( c  e.  ( 0 [,)  +oo )  /\  (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  ( sqr `  a ) ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  ( sqr `  a ) ) ) ) `  ( |_
`  y ) )  -  t ) )  <_  ( c  / 
( sqr `  y
) ) ) ) )  ->  A. y  e.  ( 1 [,)  +oo ) ( abs `  (
(  seq  1 (  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  /  ( sqr `  a
) ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  ( sqr `  y ) ) )
841, 2, 79, 4, 5, 6, 8, 80, 77, 81, 82, 83dchrisum0lem3 20630 . . . . . . . . . 10  |-  ( (
ph  /\  ( c  e.  ( 0 [,)  +oo )  /\  (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  ( sqr `  a ) ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  ( sqr `  a ) ) ) ) `  ( |_
`  y ) )  -  t ) )  <_  ( c  / 
( sqr `  y
) ) ) ) )  ->  ( z  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_
`  ( z ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( z ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )  e.  O ( 1 ) )
8584expr 601 . . . . . . . . 9  |-  ( (
ph  /\  c  e.  ( 0 [,)  +oo ) )  ->  (
(  seq  1 (  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  /  ( sqr `  a
) ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  (
(  seq  1 (  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  /  ( sqr `  a
) ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  ( sqr `  y ) ) )  ->  ( z  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_
`  ( z ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( z ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )  e.  O ( 1 ) ) )
8685rexlimdva 2642 . . . . . . . 8  |-  ( ph  ->  ( E. c  e.  ( 0 [,)  +oo ) (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  ( sqr `  a ) ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  ( sqr `  a ) ) ) ) `  ( |_
`  y ) )  -  t ) )  <_  ( c  / 
( sqr `  y
) ) )  -> 
( z  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  ( z ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( z ^
2 )  /  m
) ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  ( m  x.  d
) ) ) )  e.  O ( 1 ) ) )
8786exlimdv 1933 . . . . . . 7  |-  ( ph  ->  ( E. t E. c  e.  ( 0 [,)  +oo ) (  seq  1 (  +  , 
( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  ( sqr `  a ) ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  ( sqr `  a ) ) ) ) `  ( |_
`  y ) )  -  t ) )  <_  ( c  / 
( sqr `  y
) ) )  -> 
( z  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  ( z ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( z ^
2 )  /  m
) ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  ( m  x.  d
) ) ) )  e.  O ( 1 ) ) )
8878, 87mpd 16 . . . . . 6  |-  ( ph  ->  ( z  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  ( z ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( z ^
2 )  /  m
) ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  ( m  x.  d
) ) ) )  e.  O ( 1 ) )
89 o1f 11968 . . . . . 6  |-  ( ( z  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_ `  ( z ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( z ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )  e.  O ( 1 )  ->  ( z  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_
`  ( z ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( z ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) ) : dom  (  z  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_ `  ( z ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( z ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) ) --> CC )
9088, 89syl 17 . . . . 5  |-  ( ph  ->  ( z  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  ( z ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( z ^
2 )  /  m
) ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  ( m  x.  d
) ) ) ) : dom  (  z  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_ `  ( z ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( z ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) ) --> CC )
91 sumex 12125 . . . . . . 7  |-  sum_ m  e.  ( 1 ... ( |_ `  ( z ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( z ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) )  e. 
_V
92 eqid 2258 . . . . . . 7  |-  ( z  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_ `  ( z ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( z ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )  =  ( z  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_
`  ( z ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( z ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )
9391, 92dmmpti 5311 . . . . . 6  |-  dom  ( 
z  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_ `  ( z ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( z ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )  =  RR+
9493feq2i 5322 . . . . 5  |-  ( ( z  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_ `  ( z ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( z ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) ) : dom  (  z  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_ `  ( z ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( z ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) ) --> CC  <->  ( z  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_
`  ( z ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( z ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) ) : RR+ --> CC )
9590, 94sylib 190 . . . 4  |-  ( ph  ->  ( z  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  ( z ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( z ^
2 )  /  m
) ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  ( m  x.  d
) ) ) ) : RR+ --> CC )
96 rpssre 10331 . . . . 5  |-  RR+  C_  RR
9796a1i 12 . . . 4  |-  ( ph  -> 
RR+  C_  RR )
98 resqcl 11137 . . . . . 6  |-  ( t  e.  RR  ->  (
t ^ 2 )  e.  RR )
9998adantl 454 . . . . 5  |-  ( (
ph  /\  t  e.  RR )  ->  ( t ^ 2 )  e.  RR )
100 0re 8806 . . . . . . . . 9  |-  0  e.  RR
101100a1i 12 . . . . . . . 8  |-  ( ( ( ph  /\  t  e.  RR )  /\  (
x  e.  RR+  /\  (
t ^ 2 )  <_  x ) )  ->  0  e.  RR )
102 simplr 734 . . . . . . . 8  |-  ( ( ( ph  /\  t  e.  RR )  /\  (
x  e.  RR+  /\  (
t ^ 2 )  <_  x ) )  ->  t  e.  RR )
103 simplrr 740 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  ( x  e.  RR+  /\  ( t ^ 2 )  <_  x )
)  /\  0  <_  t )  ->  ( t ^ 2 )  <_  x )
10448ad2antrl 711 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  t  e.  RR )  /\  (
x  e.  RR+  /\  (
t ^ 2 )  <_  x ) )  ->  ( x  e.  RR  /\  0  <_  x ) )
105104adantr 453 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  ( x  e.  RR+  /\  ( t ^ 2 )  <_  x )
)  /\  0  <_  t )  ->  ( x  e.  RR  /\  0  <_  x ) )
106105, 50syl 17 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  ( x  e.  RR+  /\  ( t ^ 2 )  <_  x )
)  /\  0  <_  t )  ->  ( ( sqr `  x ) ^
2 )  =  x )
107103, 106breqtrrd 4023 . . . . . . . . 9  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  ( x  e.  RR+  /\  ( t ^ 2 )  <_  x )
)  /\  0  <_  t )  ->  ( t ^ 2 )  <_ 
( ( sqr `  x
) ^ 2 ) )
108102adantr 453 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  ( x  e.  RR+  /\  ( t ^ 2 )  <_  x )
)  /\  0  <_  t )  ->  t  e.  RR )
10963rpred 10357 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sqr `  x )  e.  RR )
110109ad2ant2r 730 . . . . . . . . . . 11  |-  ( ( ( ph  /\  t  e.  RR )  /\  (
x  e.  RR+  /\  (
t ^ 2 )  <_  x ) )  ->  ( sqr `  x
)  e.  RR )
111110adantr 453 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  ( x  e.  RR+  /\  ( t ^ 2 )  <_  x )
)  /\  0  <_  t )  ->  ( sqr `  x )  e.  RR )
112 simpr 449 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  ( x  e.  RR+  /\  ( t ^ 2 )  <_  x )
)  /\  0  <_  t )  ->  0  <_  t )
113 sqrge0 11708 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  0  <_  x )  -> 
0  <_  ( sqr `  x ) )
114104, 113syl 17 . . . . . . . . . . 11  |-  ( ( ( ph  /\  t  e.  RR )  /\  (
x  e.  RR+  /\  (
t ^ 2 )  <_  x ) )  ->  0  <_  ( sqr `  x ) )
115114adantr 453 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  ( x  e.  RR+  /\  ( t ^ 2 )  <_  x )
)  /\  0  <_  t )  ->  0  <_  ( sqr `  x ) )
116108, 111, 112, 115le2sqd 11246 . . . . . . . . 9  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  ( x  e.  RR+  /\  ( t ^ 2 )  <_  x )
)  /\  0  <_  t )  ->  ( t  <_  ( sqr `  x
)  <->  ( t ^
2 )  <_  (
( sqr `  x
) ^ 2 ) ) )
117107, 116mpbird 225 . . . . . . . 8  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  ( x  e.  RR+  /\  ( t ^ 2 )  <_  x )
)  /\  0  <_  t )  ->  t  <_  ( sqr `  x ) )
118102adantr 453 . . . . . . . . 9  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  ( x  e.  RR+  /\  ( t ^ 2 )  <_  x )
)  /\  t  <_  0 )  ->  t  e.  RR )
119100a1i 12 . . . . . . . . 9  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  ( x  e.  RR+  /\  ( t ^ 2 )  <_  x )
)  /\  t  <_  0 )  ->  0  e.  RR )
120110adantr 453 . . . . . . . . 9  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  ( x  e.  RR+  /\  ( t ^ 2 )  <_  x )
)  /\  t  <_  0 )  ->  ( sqr `  x )  e.  RR )
121 simpr 449 . . . . . . . . 9  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  ( x  e.  RR+  /\  ( t ^ 2 )  <_  x )
)  /\  t  <_  0 )  ->  t  <_  0 )
122114adantr 453 . . . . . . . . 9  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  ( x  e.  RR+  /\  ( t ^ 2 )  <_  x )
)  /\  t  <_  0 )  ->  0  <_  ( sqr `  x ) )
123118, 119, 120, 121, 122letrd 8941 . . . . . . . 8  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  ( x  e.  RR+  /\  ( t ^ 2 )  <_  x )
)  /\  t  <_  0 )  ->  t  <_  ( sqr `  x ) )
124101, 102, 117, 123lecasei 8894 . . . . . . 7  |-  ( ( ( ph  /\  t  e.  RR )  /\  (
x  e.  RR+  /\  (
t ^ 2 )  <_  x ) )  ->  t  <_  ( sqr `  x ) )
125124expr 601 . . . . . 6  |-  ( ( ( ph  /\  t  e.  RR )  /\  x  e.  RR+ )  ->  (
( t ^ 2 )  <_  x  ->  t  <_  ( sqr `  x
) ) )
126125ralrimiva 2601 . . . . 5  |-  ( (
ph  /\  t  e.  RR )  ->  A. x  e.  RR+  ( ( t ^ 2 )  <_  x  ->  t  <_  ( sqr `  x ) ) )
127 breq1 4000 . . . . . . . 8  |-  ( c  =  ( t ^
2 )  ->  (
c  <_  x  <->  ( t ^ 2 )  <_  x ) )
128127imbi1d 310 . . . . . . 7  |-  ( c  =  ( t ^
2 )  ->  (
( c  <_  x  ->  t  <_  ( sqr `  x ) )  <->  ( (
t ^ 2 )  <_  x  ->  t  <_  ( sqr `  x
) ) ) )
129128ralbidv 2538 . . . . . 6  |-  ( c  =  ( t ^
2 )  ->  ( A. x  e.  RR+  (
c  <_  x  ->  t  <_  ( sqr `  x
) )  <->  A. x  e.  RR+  ( ( t ^ 2 )  <_  x  ->  t  <_  ( sqr `  x ) ) ) )
130129rcla4ev 2859 . . . . 5  |-  ( ( ( t ^ 2 )  e.  RR  /\  A. x  e.  RR+  (
( t ^ 2 )  <_  x  ->  t  <_  ( sqr `  x
) ) )  ->  E. c  e.  RR  A. x  e.  RR+  (
c  <_  x  ->  t  <_  ( sqr `  x
) ) )
13199, 126, 130syl2anc 645 . . . 4  |-  ( (
ph  /\  t  e.  RR )  ->  E. c  e.  RR  A. x  e.  RR+  ( c  <_  x  ->  t  <_  ( sqr `  x ) ) )
13295, 88, 63, 97, 131o1compt 12026 . . 3  |-  ( ph  ->  ( ( z  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_
`  ( z ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( z ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )  o.  ( x  e.  RR+  |->  ( sqr `  x
) ) )  e.  O ( 1 ) )
13376, 132eqeltrd 2332 . 2  |-  ( ph  ->  ( x  e.  RR+  |->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( ( b  e.  NN  |->  sum_ y  e.  {
i  e.  NN  | 
i  ||  b } 
( X `  ( L `  y )
) ) `  k
)  /  ( sqr `  k ) ) )  e.  O ( 1 ) )
1341, 2, 3, 4, 5, 6, 7, 14, 15, 133dchrisum0fno1 20622 1  |-  -.  ph
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360   E.wex 1537    = wceq 1619    e. wcel 1621    =/= wne 2421   A.wral 2518   E.wrex 2519   {crab 2522    \ cdif 3124    C_ wss 3127   {csn 3614   class class class wbr 3997    e. cmpt 4051   dom cdm 4661    o. ccom 4665   -->wf 4669   ` cfv 4673  (class class class)co 5792   Fincfn 6831   CCcc 8703   RRcr 8704   0cc0 8705   1c1 8706    + caddc 8708    x. cmul 8710    +oocpnf 8832    <_ cle 8836    - cmin 9005    / cdiv 9391   NNcn 9714   2c2 9763   ZZcz 9991   RR+crp 10321   [,)cico 10624   ...cfz 10748   |_cfl 10890    seq cseq 11012   ^cexp 11070   sqrcsqr 11683   abscabs 11684    ~~> cli 11923   O (
1 )co1 11925   sum_csu 12123    || cdivides 12493   Basecbs 13110   0gc0g 13362   ZRHomczrh 16413  ℤ/nczn 16416  DChrcdchr 20433
This theorem is referenced by:  dchrisumn0  20632  rpvmasum  20637
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-inf2 7310  ax-cnex 8761  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782  ax-pre-sup 8783  ax-addf 8784  ax-mulf 8785
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-fal 1316  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-int 3837  df-iun 3881  df-iin 3882  df-disj 3968  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-se 4325  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-isom 4690  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-of 6012  df-1st 6056  df-2nd 6057  df-tpos 6168  df-rpss 6211  df-iota 6225  df-riota 6272  df-recs 6356  df-rdg 6391  df-1o 6447  df-2o 6448  df-oadd 6451  df-omul 6452  df-er 6628  df-ec 6630  df-qs 6634  df-map 6742  df-pm 6743  df-ixp 6786  df-en 6832  df-dom 6833  df-sdom 6834  df-fin 6835  df-fi 7133  df-sup 7162  df-oi 7193  df-card 7540  df-acn 7543  df-cda 7762  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-div 9392  df-n 9715  df-2 9772  df-3 9773  df-4 9774  df-5 9775  df-6 9776  df-7 9777  df-8 9778  df-9 9779  df-10 9780  df-n0 9933  df-z 9992  df-dec 10092  df-uz 10198  df-q 10284  df-rp 10322  df-xneg 10419  df-xadd 10420  df-xmul 10421  df-ioo 10626  df-ioc 10627  df-ico 10628  df-icc 10629  df-fz 10749  df-fzo 10837  df-fl 10891  df-mod 10940  df-seq 11013  df-exp 11071  df-fac 11255  df-bc 11282  df-hash 11304  df-word 11374  df-concat 11375  df-s1 11376  df-shft 11527  df-cj 11549  df-re 11550  df-im 11551  df-sqr 11685  df-abs 11686  df-limsup 11910  df-clim 11927  df-rlim 11928  df-o1 11929  df-lo1 11930  df-sum 12124  df-ef 12311  df-e 12312  df-sin 12313  df-cos 12314  df-pi 12316  df-divides 12494  df-gcd 12648  df-prime 12721  df-numer 12768  df-denom 12769  df-phi 12796  df-pc 12852  df-struct 13112  df-ndx 13113  df-slot 13114  df-base 13115  df-sets 13116  df-ress 13117  df-plusg 13183  df-mulr 13184  df-starv 13185  df-sca 13186  df-vsca 13187  df-tset 13189  df-ple 13190  df-ds 13192  df-hom 13194  df-cco 13195  df-rest 13289  df-topn 13290  df-topgen 13306  df-pt 13307  df-prds 13310  df-xrs 13365  df-0g 13366  df-gsum 13367  df-qtop 13372  df-imas 13373  df-divs 13374  df-xps 13375  df-mre 13450  df-mrc 13451  df-acs 13453  df-mnd 14329  df-mhm 14377  df-submnd 14378  df-grp 14451  df-minusg 14452  df-sbg 14453  df-mulg 14454  df-subg 14580  df-nsg 14581  df-eqg 14582  df-ghm 14643  df-gim 14685  df-ga 14706  df-cntz 14755  df-oppg 14781  df-od 14806  df-gex 14807  df-pgp 14808  df-lsm 14909  df-pj1 14910  df-cmn 15053  df-abl 15054  df-cyg 15127  df-dprd 15195  df-dpj 15196  df-mgp 15288  df-ring 15302  df-cring 15303  df-ur 15304  df-oppr 15367  df-dvdsr 15385  df-unit 15386  df-invr 15416  df-dvr 15427  df-rnghom 15458  df-drng 15476  df-subrg 15505  df-lmod 15591  df-lss 15652  df-lsp 15691  df-sra 15887  df-rgmod 15888  df-lidl 15889  df-rsp 15890  df-2idl 15946  df-xmet 16335  df-met 16336  df-bl 16337  df-mopn 16338  df-cnfld 16340  df-zrh 16417  df-zn 16420  df-top 16598  df-bases 16600  df-topon 16601  df-topsp 16602  df-cld 16718  df-ntr 16719  df-cls 16720  df-nei 16797  df-lp 16830  df-perf 16831  df-cn 16919  df-cnp 16920  df-haus 17005  df-cmp 17076  df-tx 17219  df-hmeo 17408  df-fbas 17482  df-fg 17483  df-fil 17503  df-fm 17595  df-flim 17596  df-flf 17597  df-xms 17847  df-ms 17848  df-tms 17849  df-cncf 18344  df-0p 18987  df-limc 19178  df-dv 19179  df-ply 19532  df-idp 19533  df-coe 19534  df-dgr 19535  df-quot 19633  df-log 19876  df-cxp 19877  df-em 20249  df-cht 20296  df-vma 20297  df-chp 20298  df-ppi 20299  df-mu 20300  df-dchr 20434
  Copyright terms: Public domain W3C validator