MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0 Unicode version

Theorem dchrisum0 20663
Description: The sum  sum_ n  e.  NN ,  X ( n )  /  n is nonzero for all non-principal Dirichlet characters (i.e. the assumption  X  e.  W is contradictory). This is the key result that allows us to eliminate the conditionals from dchrmusum2 20637 and dchrvmasumif 20646. Lemma 9.4.4 of [Shapiro], p. 382. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum2.g  |-  G  =  (DChr `  N )
rpvmasum2.d  |-  D  =  ( Base `  G
)
rpvmasum2.1  |-  .1.  =  ( 0g `  G )
rpvmasum2.w  |-  W  =  { y  e.  ( D  \  {  .1.  } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 }
dchrisum0.b  |-  ( ph  ->  X  e.  W )
Assertion
Ref Expression
dchrisum0  |-  -.  ph
Distinct variable groups:    y, m,  .1.    m, N, y    ph, m    m, Z, y    D, m, y    m, L, y   
m, X, y
Allowed substitution hints:    ph( y)    G( y, m)    W( y, m)

Proof of Theorem dchrisum0
StepHypRef Expression
1 rpvmasum.z . 2  |-  Z  =  (ℤ/n `  N )
2 rpvmasum.l . 2  |-  L  =  ( ZRHom `  Z
)
3 rpvmasum.a . 2  |-  ( ph  ->  N  e.  NN )
4 rpvmasum2.g . 2  |-  G  =  (DChr `  N )
5 rpvmasum2.d . 2  |-  D  =  ( Base `  G
)
6 rpvmasum2.1 . 2  |-  .1.  =  ( 0g `  G )
7 eqid 2284 . 2  |-  ( b  e.  NN  |->  sum_ y  e.  { i  e.  NN  |  i  ||  b }  ( X `  ( L `  y )
) )  =  ( b  e.  NN  |->  sum_ y  e.  { i  e.  NN  |  i 
||  b }  ( X `  ( L `  y ) ) )
8 rpvmasum2.w . . . . 5  |-  W  =  { y  e.  ( D  \  {  .1.  } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 }
9 ssrab2 3259 . . . . 5  |-  { y  e.  ( D  \  {  .1.  } )  | 
sum_ m  e.  NN  ( ( y `  ( L `  m ) )  /  m )  =  0 }  C_  ( D  \  {  .1.  } )
108, 9eqsstri 3209 . . . 4  |-  W  C_  ( D  \  {  .1.  } )
11 difss 3304 . . . 4  |-  ( D 
\  {  .1.  }
)  C_  D
1210, 11sstri 3189 . . 3  |-  W  C_  D
13 dchrisum0.b . . 3  |-  ( ph  ->  X  e.  W )
1412, 13sseldi 3179 . 2  |-  ( ph  ->  X  e.  D )
151, 2, 3, 4, 5, 6, 8, 13dchrisum0re 20656 . 2  |-  ( ph  ->  X : ( Base `  Z ) --> RR )
16 fveq2 5485 . . . . . . . 8  |-  ( k  =  ( m  x.  d )  ->  ( sqr `  k )  =  ( sqr `  (
m  x.  d ) ) )
1716oveq2d 5835 . . . . . . 7  |-  ( k  =  ( m  x.  d )  ->  (
( X `  ( L `  m )
)  /  ( sqr `  k ) )  =  ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )
18 rpre 10355 . . . . . . . 8  |-  ( x  e.  RR+  ->  x  e.  RR )
1918adantl 454 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR )
2014ad3antrrr 713 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  {
i  e.  NN  | 
i  ||  k }
)  ->  X  e.  D )
21 ssrab2 3259 . . . . . . . . . . . . 13  |-  { i  e.  NN  |  i 
||  k }  C_  NN
2221sseli 3177 . . . . . . . . . . . 12  |-  ( m  e.  { i  e.  NN  |  i  ||  k }  ->  m  e.  NN )
2322nnzd 10111 . . . . . . . . . . 11  |-  ( m  e.  { i  e.  NN  |  i  ||  k }  ->  m  e.  ZZ )
2423adantl 454 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  {
i  e.  NN  | 
i  ||  k }
)  ->  m  e.  ZZ )
254, 1, 5, 2, 20, 24dchrzrhcl 20478 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  {
i  e.  NN  | 
i  ||  k }
)  ->  ( X `  ( L `  m
) )  e.  CC )
26 elfznn 10813 . . . . . . . . . . . . . 14  |-  ( k  e.  ( 1 ... ( |_ `  x
) )  ->  k  e.  NN )
2726adantl 454 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  k  e.  NN )
2827nnrpd 10384 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  k  e.  RR+ )
2928rpsqrcld 11888 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  k )  e.  RR+ )
3029rpcnd 10387 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  k )  e.  CC )
3130adantr 453 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  {
i  e.  NN  | 
i  ||  k }
)  ->  ( sqr `  k )  e.  CC )
3229rpne0d 10390 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  k )  =/=  0
)
3332adantr 453 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  {
i  e.  NN  | 
i  ||  k }
)  ->  ( sqr `  k )  =/=  0
)
3425, 31, 33divcld 9531 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  {
i  e.  NN  | 
i  ||  k }
)  ->  ( ( X `  ( L `  m ) )  / 
( sqr `  k
) )  e.  CC )
3534anasss 631 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
k  e.  ( 1 ... ( |_ `  x ) )  /\  m  e.  { i  e.  NN  |  i  ||  k } ) )  -> 
( ( X `  ( L `  m ) )  /  ( sqr `  k ) )  e.  CC )
3617, 19, 35dvdsflsumcom 20422 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) )
sum_ m  e.  { i  e.  NN  |  i 
||  k }  (
( X `  ( L `  m )
)  /  ( sqr `  k ) )  = 
sum_ m  e.  (
1 ... ( |_ `  x ) ) sum_ d  e.  ( 1 ... ( |_ `  ( x  /  m
) ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  ( m  x.  d
) ) ) )
371, 2, 3, 4, 5, 6, 7dchrisum0fval 20648 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
( b  e.  NN  |->  sum_ y  e.  { i  e.  NN  |  i 
||  b }  ( X `  ( L `  y ) ) ) `
 k )  = 
sum_ m  e.  { i  e.  NN  |  i 
||  k }  ( X `  ( L `  m ) ) )
3827, 37syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
b  e.  NN  |->  sum_ y  e.  { i  e.  NN  |  i 
||  b }  ( X `  ( L `  y ) ) ) `
 k )  = 
sum_ m  e.  { i  e.  NN  |  i 
||  k }  ( X `  ( L `  m ) ) )
3938oveq1d 5834 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( b  e.  NN  |->  sum_ y  e.  { i  e.  NN  |  i 
||  b }  ( X `  ( L `  y ) ) ) `
 k )  / 
( sqr `  k
) )  =  (
sum_ m  e.  { i  e.  NN  |  i 
||  k }  ( X `  ( L `  m ) )  / 
( sqr `  k
) ) )
40 fzfid 11029 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1 ... k )  e. 
Fin )
41 sgmss 20338 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  { i  e.  NN  |  i 
||  k }  C_  ( 1 ... k
) )
4227, 41syl 17 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  { i  e.  NN  |  i  ||  k }  C_  ( 1 ... k ) )
43 ssfi 7078 . . . . . . . . . 10  |-  ( ( ( 1 ... k
)  e.  Fin  /\  { i  e.  NN  | 
i  ||  k }  C_  ( 1 ... k
) )  ->  { i  e.  NN  |  i 
||  k }  e.  Fin )
4440, 42, 43syl2anc 645 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  { i  e.  NN  |  i  ||  k }  e.  Fin )
4544, 30, 25, 32fsumdivc 12242 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ m  e.  { i  e.  NN  |  i  ||  k }  ( X `  ( L `  m
) )  /  ( sqr `  k ) )  =  sum_ m  e.  {
i  e.  NN  | 
i  ||  k } 
( ( X `  ( L `  m ) )  /  ( sqr `  k ) ) )
4639, 45eqtrd 2316 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( b  e.  NN  |->  sum_ y  e.  { i  e.  NN  |  i 
||  b }  ( X `  ( L `  y ) ) ) `
 k )  / 
( sqr `  k
) )  =  sum_ m  e.  { i  e.  NN  |  i  ||  k }  ( ( X `  ( L `  m ) )  / 
( sqr `  k
) ) )
4746sumeq2dv 12170 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( ( b  e.  NN  |->  sum_ y  e.  { i  e.  NN  |  i  ||  b }  ( X `  ( L `  y )
) ) `  k
)  /  ( sqr `  k ) )  = 
sum_ k  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  { i  e.  NN  |  i 
||  k }  (
( X `  ( L `  m )
)  /  ( sqr `  k ) ) )
48 rprege0 10363 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( x  e.  RR  /\  0  <_  x ) )
4948adantl 454 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x  e.  RR  /\  0  <_  x ) )
50 resqrth 11735 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  0  <_  x )  -> 
( ( sqr `  x
) ^ 2 )  =  x )
5149, 50syl 17 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( sqr `  x ) ^
2 )  =  x )
5251fveq2d 5489 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( |_ `  ( ( sqr `  x
) ^ 2 ) )  =  ( |_
`  x ) )
5352oveq2d 5835 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 1 ... ( |_ `  ( ( sqr `  x
) ^ 2 ) ) )  =  ( 1 ... ( |_
`  x ) ) )
5451oveq1d 5834 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
( sqr `  x
) ^ 2 )  /  m )  =  ( x  /  m
) )
5554fveq2d 5489 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( |_ `  ( ( ( sqr `  x ) ^ 2 )  /  m ) )  =  ( |_
`  ( x  /  m ) ) )
5655oveq2d 5835 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 1 ... ( |_ `  ( ( ( sqr `  x ) ^ 2 )  /  m ) ) )  =  ( 1 ... ( |_
`  ( x  /  m ) ) ) )
5756sumeq1d 12168 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ d  e.  ( 1 ... ( |_ `  ( ( ( sqr `  x ) ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) )  = 
sum_ d  e.  ( 1 ... ( |_
`  ( x  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )
5857adantr 453 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( ( sqr `  x ) ^ 2 ) ) ) )  ->  sum_ d  e.  ( 1 ... ( |_
`  ( ( ( sqr `  x ) ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) )  = 
sum_ d  e.  ( 1 ... ( |_
`  ( x  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )
5953, 58sumeq12dv 12173 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( ( sqr `  x ) ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( ( sqr `  x ) ^ 2 )  /  m ) ) ) ( ( X `  ( L `
 m ) )  /  ( sqr `  (
m  x.  d ) ) )  =  sum_ m  e.  ( 1 ... ( |_ `  x
) ) sum_ d  e.  ( 1 ... ( |_ `  ( x  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )
6036, 47, 593eqtr4d 2326 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( ( b  e.  NN  |->  sum_ y  e.  { i  e.  NN  |  i  ||  b }  ( X `  ( L `  y )
) ) `  k
)  /  ( sqr `  k ) )  = 
sum_ m  e.  (
1 ... ( |_ `  ( ( sqr `  x
) ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( ( sqr `  x ) ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )
6160mpteq2dva 4107 . . . 4  |-  ( ph  ->  ( x  e.  RR+  |->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( ( b  e.  NN  |->  sum_ y  e.  {
i  e.  NN  | 
i  ||  b } 
( X `  ( L `  y )
) ) `  k
)  /  ( sqr `  k ) ) )  =  ( x  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_
`  ( ( sqr `  x ) ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( ( sqr `  x ) ^ 2 )  /  m ) ) ) ( ( X `  ( L `
 m ) )  /  ( sqr `  (
m  x.  d ) ) ) ) )
62 rpsqrcl 11744 . . . . . 6  |-  ( x  e.  RR+  ->  ( sqr `  x )  e.  RR+ )
6362adantl 454 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sqr `  x )  e.  RR+ )
64 eqidd 2285 . . . . 5  |-  ( ph  ->  ( x  e.  RR+  |->  ( sqr `  x ) )  =  ( x  e.  RR+  |->  ( sqr `  x ) ) )
65 eqidd 2285 . . . . 5  |-  ( ph  ->  ( z  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  ( z ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( z ^
2 )  /  m
) ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  ( m  x.  d
) ) ) )  =  ( z  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_
`  ( z ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( z ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) ) )
66 oveq1 5826 . . . . . . . 8  |-  ( z  =  ( sqr `  x
)  ->  ( z ^ 2 )  =  ( ( sqr `  x
) ^ 2 ) )
6766fveq2d 5489 . . . . . . 7  |-  ( z  =  ( sqr `  x
)  ->  ( |_ `  ( z ^ 2 ) )  =  ( |_ `  ( ( sqr `  x ) ^ 2 ) ) )
6867oveq2d 5835 . . . . . 6  |-  ( z  =  ( sqr `  x
)  ->  ( 1 ... ( |_ `  ( z ^ 2 ) ) )  =  ( 1 ... ( |_ `  ( ( sqr `  x ) ^ 2 ) ) ) )
6966oveq1d 5834 . . . . . . . . . 10  |-  ( z  =  ( sqr `  x
)  ->  ( (
z ^ 2 )  /  m )  =  ( ( ( sqr `  x ) ^ 2 )  /  m ) )
7069fveq2d 5489 . . . . . . . . 9  |-  ( z  =  ( sqr `  x
)  ->  ( |_ `  ( ( z ^
2 )  /  m
) )  =  ( |_ `  ( ( ( sqr `  x
) ^ 2 )  /  m ) ) )
7170oveq2d 5835 . . . . . . . 8  |-  ( z  =  ( sqr `  x
)  ->  ( 1 ... ( |_ `  ( ( z ^
2 )  /  m
) ) )  =  ( 1 ... ( |_ `  ( ( ( sqr `  x ) ^ 2 )  /  m ) ) ) )
7271sumeq1d 12168 . . . . . . 7  |-  ( z  =  ( sqr `  x
)  ->  sum_ d  e.  ( 1 ... ( |_ `  ( ( z ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) )  = 
sum_ d  e.  ( 1 ... ( |_
`  ( ( ( sqr `  x ) ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )
7372adantr 453 . . . . . 6  |-  ( ( z  =  ( sqr `  x )  /\  m  e.  ( 1 ... ( |_ `  ( z ^
2 ) ) ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  ( ( z ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) )  = 
sum_ d  e.  ( 1 ... ( |_
`  ( ( ( sqr `  x ) ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )
7468, 73sumeq12dv 12173 . . . . 5  |-  ( z  =  ( sqr `  x
)  ->  sum_ m  e.  ( 1 ... ( |_ `  ( z ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( z ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) )  = 
sum_ m  e.  (
1 ... ( |_ `  ( ( sqr `  x
) ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( ( sqr `  x ) ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )
7563, 64, 65, 74fmptco 5652 . . . 4  |-  ( ph  ->  ( ( z  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_
`  ( z ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( z ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )  o.  ( x  e.  RR+  |->  ( sqr `  x
) ) )  =  ( x  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  ( ( sqr `  x
) ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( ( sqr `  x ) ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) ) )
7661, 75eqtr4d 2319 . . 3  |-  ( ph  ->  ( x  e.  RR+  |->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( ( b  e.  NN  |->  sum_ y  e.  {
i  e.  NN  | 
i  ||  b } 
( X `  ( L `  y )
) ) `  k
)  /  ( sqr `  k ) ) )  =  ( ( z  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_ `  ( z ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( z ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )  o.  ( x  e.  RR+  |->  ( sqr `  x
) ) ) )
77 eqid 2284 . . . . . . . 8  |-  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  /  ( sqr `  a
) ) )  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  ( sqr `  a ) ) )
781, 2, 3, 4, 5, 6, 8, 13, 77dchrisum0lema 20657 . . . . . . 7  |-  ( ph  ->  E. t E. c  e.  ( 0 [,)  +oo ) (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  ( sqr `  a ) ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  ( sqr `  a ) ) ) ) `  ( |_
`  y ) )  -  t ) )  <_  ( c  / 
( sqr `  y
) ) ) )
793adantr 453 . . . . . . . . . . 11  |-  ( (
ph  /\  ( c  e.  ( 0 [,)  +oo )  /\  (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  ( sqr `  a ) ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  ( sqr `  a ) ) ) ) `  ( |_
`  y ) )  -  t ) )  <_  ( c  / 
( sqr `  y
) ) ) ) )  ->  N  e.  NN )
8013adantr 453 . . . . . . . . . . 11  |-  ( (
ph  /\  ( c  e.  ( 0 [,)  +oo )  /\  (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  ( sqr `  a ) ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  ( sqr `  a ) ) ) ) `  ( |_
`  y ) )  -  t ) )  <_  ( c  / 
( sqr `  y
) ) ) ) )  ->  X  e.  W )
81 simprl 735 . . . . . . . . . . 11  |-  ( (
ph  /\  ( c  e.  ( 0 [,)  +oo )  /\  (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  ( sqr `  a ) ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  ( sqr `  a ) ) ) ) `  ( |_
`  y ) )  -  t ) )  <_  ( c  / 
( sqr `  y
) ) ) ) )  ->  c  e.  ( 0 [,)  +oo ) )
82 simprrl 743 . . . . . . . . . . 11  |-  ( (
ph  /\  ( c  e.  ( 0 [,)  +oo )  /\  (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  ( sqr `  a ) ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  ( sqr `  a ) ) ) ) `  ( |_
`  y ) )  -  t ) )  <_  ( c  / 
( sqr `  y
) ) ) ) )  ->  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  ( sqr `  a ) ) ) )  ~~>  t )
83 simprrr 744 . . . . . . . . . . 11  |-  ( (
ph  /\  ( c  e.  ( 0 [,)  +oo )  /\  (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  ( sqr `  a ) ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  ( sqr `  a ) ) ) ) `  ( |_
`  y ) )  -  t ) )  <_  ( c  / 
( sqr `  y
) ) ) ) )  ->  A. y  e.  ( 1 [,)  +oo ) ( abs `  (
(  seq  1 (  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  /  ( sqr `  a
) ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  ( sqr `  y ) ) )
841, 2, 79, 4, 5, 6, 8, 80, 77, 81, 82, 83dchrisum0lem3 20662 . . . . . . . . . 10  |-  ( (
ph  /\  ( c  e.  ( 0 [,)  +oo )  /\  (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  ( sqr `  a ) ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  ( sqr `  a ) ) ) ) `  ( |_
`  y ) )  -  t ) )  <_  ( c  / 
( sqr `  y
) ) ) ) )  ->  ( z  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_
`  ( z ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( z ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )  e.  O ( 1 ) )
8584expr 601 . . . . . . . . 9  |-  ( (
ph  /\  c  e.  ( 0 [,)  +oo ) )  ->  (
(  seq  1 (  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  /  ( sqr `  a
) ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  (
(  seq  1 (  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  /  ( sqr `  a
) ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  ( sqr `  y ) ) )  ->  ( z  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_
`  ( z ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( z ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )  e.  O ( 1 ) ) )
8685rexlimdva 2668 . . . . . . . 8  |-  ( ph  ->  ( E. c  e.  ( 0 [,)  +oo ) (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  ( sqr `  a ) ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  ( sqr `  a ) ) ) ) `  ( |_
`  y ) )  -  t ) )  <_  ( c  / 
( sqr `  y
) ) )  -> 
( z  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  ( z ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( z ^
2 )  /  m
) ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  ( m  x.  d
) ) ) )  e.  O ( 1 ) ) )
8786exlimdv 1668 . . . . . . 7  |-  ( ph  ->  ( E. t E. c  e.  ( 0 [,)  +oo ) (  seq  1 (  +  , 
( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  ( sqr `  a ) ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  ( sqr `  a ) ) ) ) `  ( |_
`  y ) )  -  t ) )  <_  ( c  / 
( sqr `  y
) ) )  -> 
( z  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  ( z ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( z ^
2 )  /  m
) ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  ( m  x.  d
) ) ) )  e.  O ( 1 ) ) )
8878, 87mpd 16 . . . . . 6  |-  ( ph  ->  ( z  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  ( z ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( z ^
2 )  /  m
) ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  ( m  x.  d
) ) ) )  e.  O ( 1 ) )
89 o1f 11997 . . . . . 6  |-  ( ( z  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_ `  ( z ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( z ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )  e.  O ( 1 )  ->  ( z  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_
`  ( z ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( z ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) ) : dom  (  z  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_ `  ( z ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( z ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) ) --> CC )
9088, 89syl 17 . . . . 5  |-  ( ph  ->  ( z  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  ( z ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( z ^
2 )  /  m
) ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  ( m  x.  d
) ) ) ) : dom  (  z  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_ `  ( z ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( z ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) ) --> CC )
91 sumex 12154 . . . . . . 7  |-  sum_ m  e.  ( 1 ... ( |_ `  ( z ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( z ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) )  e. 
_V
92 eqid 2284 . . . . . . 7  |-  ( z  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_ `  ( z ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( z ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )  =  ( z  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_
`  ( z ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( z ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )
9391, 92dmmpti 5338 . . . . . 6  |-  dom  ( 
z  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_ `  ( z ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( z ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )  =  RR+
9493feq2i 5349 . . . . 5  |-  ( ( z  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_ `  ( z ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( z ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) ) : dom  (  z  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_ `  ( z ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( z ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) ) --> CC  <->  ( z  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_
`  ( z ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( z ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) ) : RR+ --> CC )
9590, 94sylib 190 . . . 4  |-  ( ph  ->  ( z  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  ( z ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( z ^
2 )  /  m
) ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  ( m  x.  d
) ) ) ) : RR+ --> CC )
96 rpssre 10359 . . . . 5  |-  RR+  C_  RR
9796a1i 12 . . . 4  |-  ( ph  -> 
RR+  C_  RR )
98 resqcl 11165 . . . . . 6  |-  ( t  e.  RR  ->  (
t ^ 2 )  e.  RR )
9998adantl 454 . . . . 5  |-  ( (
ph  /\  t  e.  RR )  ->  ( t ^ 2 )  e.  RR )
100 0re 8833 . . . . . . . . 9  |-  0  e.  RR
101100a1i 12 . . . . . . . 8  |-  ( ( ( ph  /\  t  e.  RR )  /\  (
x  e.  RR+  /\  (
t ^ 2 )  <_  x ) )  ->  0  e.  RR )
102 simplr 734 . . . . . . . 8  |-  ( ( ( ph  /\  t  e.  RR )  /\  (
x  e.  RR+  /\  (
t ^ 2 )  <_  x ) )  ->  t  e.  RR )
103 simplrr 740 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  ( x  e.  RR+  /\  ( t ^ 2 )  <_  x )
)  /\  0  <_  t )  ->  ( t ^ 2 )  <_  x )
10448ad2antrl 711 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  t  e.  RR )  /\  (
x  e.  RR+  /\  (
t ^ 2 )  <_  x ) )  ->  ( x  e.  RR  /\  0  <_  x ) )
105104adantr 453 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  ( x  e.  RR+  /\  ( t ^ 2 )  <_  x )
)  /\  0  <_  t )  ->  ( x  e.  RR  /\  0  <_  x ) )
106105, 50syl 17 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  ( x  e.  RR+  /\  ( t ^ 2 )  <_  x )
)  /\  0  <_  t )  ->  ( ( sqr `  x ) ^
2 )  =  x )
107103, 106breqtrrd 4050 . . . . . . . . 9  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  ( x  e.  RR+  /\  ( t ^ 2 )  <_  x )
)  /\  0  <_  t )  ->  ( t ^ 2 )  <_ 
( ( sqr `  x
) ^ 2 ) )
108102adantr 453 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  ( x  e.  RR+  /\  ( t ^ 2 )  <_  x )
)  /\  0  <_  t )  ->  t  e.  RR )
10963rpred 10385 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sqr `  x )  e.  RR )
110109ad2ant2r 730 . . . . . . . . . . 11  |-  ( ( ( ph  /\  t  e.  RR )  /\  (
x  e.  RR+  /\  (
t ^ 2 )  <_  x ) )  ->  ( sqr `  x
)  e.  RR )
111110adantr 453 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  ( x  e.  RR+  /\  ( t ^ 2 )  <_  x )
)  /\  0  <_  t )  ->  ( sqr `  x )  e.  RR )
112 simpr 449 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  ( x  e.  RR+  /\  ( t ^ 2 )  <_  x )
)  /\  0  <_  t )  ->  0  <_  t )
113 sqrge0 11737 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  0  <_  x )  -> 
0  <_  ( sqr `  x ) )
114104, 113syl 17 . . . . . . . . . . 11  |-  ( ( ( ph  /\  t  e.  RR )  /\  (
x  e.  RR+  /\  (
t ^ 2 )  <_  x ) )  ->  0  <_  ( sqr `  x ) )
115114adantr 453 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  ( x  e.  RR+  /\  ( t ^ 2 )  <_  x )
)  /\  0  <_  t )  ->  0  <_  ( sqr `  x ) )
116108, 111, 112, 115le2sqd 11274 . . . . . . . . 9  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  ( x  e.  RR+  /\  ( t ^ 2 )  <_  x )
)  /\  0  <_  t )  ->  ( t  <_  ( sqr `  x
)  <->  ( t ^
2 )  <_  (
( sqr `  x
) ^ 2 ) ) )
117107, 116mpbird 225 . . . . . . . 8  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  ( x  e.  RR+  /\  ( t ^ 2 )  <_  x )
)  /\  0  <_  t )  ->  t  <_  ( sqr `  x ) )
118102adantr 453 . . . . . . . . 9  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  ( x  e.  RR+  /\  ( t ^ 2 )  <_  x )
)  /\  t  <_  0 )  ->  t  e.  RR )
119100a1i 12 . . . . . . . . 9  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  ( x  e.  RR+  /\  ( t ^ 2 )  <_  x )
)  /\  t  <_  0 )  ->  0  e.  RR )
120110adantr 453 . . . . . . . . 9  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  ( x  e.  RR+  /\  ( t ^ 2 )  <_  x )
)  /\  t  <_  0 )  ->  ( sqr `  x )  e.  RR )
121 simpr 449 . . . . . . . . 9  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  ( x  e.  RR+  /\  ( t ^ 2 )  <_  x )
)  /\  t  <_  0 )  ->  t  <_  0 )
122114adantr 453 . . . . . . . . 9  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  ( x  e.  RR+  /\  ( t ^ 2 )  <_  x )
)  /\  t  <_  0 )  ->  0  <_  ( sqr `  x ) )
123118, 119, 120, 121, 122letrd 8968 . . . . . . . 8  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  ( x  e.  RR+  /\  ( t ^ 2 )  <_  x )
)  /\  t  <_  0 )  ->  t  <_  ( sqr `  x ) )
124101, 102, 117, 123lecasei 8921 . . . . . . 7  |-  ( ( ( ph  /\  t  e.  RR )  /\  (
x  e.  RR+  /\  (
t ^ 2 )  <_  x ) )  ->  t  <_  ( sqr `  x ) )
125124expr 601 . . . . . 6  |-  ( ( ( ph  /\  t  e.  RR )  /\  x  e.  RR+ )  ->  (
( t ^ 2 )  <_  x  ->  t  <_  ( sqr `  x
) ) )
126125ralrimiva 2627 . . . . 5  |-  ( (
ph  /\  t  e.  RR )  ->  A. x  e.  RR+  ( ( t ^ 2 )  <_  x  ->  t  <_  ( sqr `  x ) ) )
127 breq1 4027 . . . . . . . 8  |-  ( c  =  ( t ^
2 )  ->  (
c  <_  x  <->  ( t ^ 2 )  <_  x ) )
128127imbi1d 310 . . . . . . 7  |-  ( c  =  ( t ^
2 )  ->  (
( c  <_  x  ->  t  <_  ( sqr `  x ) )  <->  ( (
t ^ 2 )  <_  x  ->  t  <_  ( sqr `  x
) ) ) )
129128ralbidv 2564 . . . . . 6  |-  ( c  =  ( t ^
2 )  ->  ( A. x  e.  RR+  (
c  <_  x  ->  t  <_  ( sqr `  x
) )  <->  A. x  e.  RR+  ( ( t ^ 2 )  <_  x  ->  t  <_  ( sqr `  x ) ) ) )
130129rspcev 2885 . . . . 5  |-  ( ( ( t ^ 2 )  e.  RR  /\  A. x  e.  RR+  (
( t ^ 2 )  <_  x  ->  t  <_  ( sqr `  x
) ) )  ->  E. c  e.  RR  A. x  e.  RR+  (
c  <_  x  ->  t  <_  ( sqr `  x
) ) )
13199, 126, 130syl2anc 645 . . . 4  |-  ( (
ph  /\  t  e.  RR )  ->  E. c  e.  RR  A. x  e.  RR+  ( c  <_  x  ->  t  <_  ( sqr `  x ) ) )
13295, 88, 63, 97, 131o1compt 12055 . . 3  |-  ( ph  ->  ( ( z  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_
`  ( z ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( z ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )  o.  ( x  e.  RR+  |->  ( sqr `  x
) ) )  e.  O ( 1 ) )
13376, 132eqeltrd 2358 . 2  |-  ( ph  ->  ( x  e.  RR+  |->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( ( b  e.  NN  |->  sum_ y  e.  {
i  e.  NN  | 
i  ||  b } 
( X `  ( L `  y )
) ) `  k
)  /  ( sqr `  k ) ) )  e.  O ( 1 ) )
1341, 2, 3, 4, 5, 6, 7, 14, 15, 133dchrisum0fno1 20654 1  |-  -.  ph
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360   E.wex 1533    = wceq 1628    e. wcel 1688    =/= wne 2447   A.wral 2544   E.wrex 2545   {crab 2548    \ cdif 3150    C_ wss 3153   {csn 3641   class class class wbr 4024    e. cmpt 4078   dom cdm 4688    o. ccom 4692   -->wf 5217   ` cfv 5221  (class class class)co 5819   Fincfn 6858   CCcc 8730   RRcr 8731   0cc0 8732   1c1 8733    + caddc 8735    x. cmul 8737    +oocpnf 8859    <_ cle 8863    - cmin 9032    / cdiv 9418   NNcn 9741   2c2 9790   ZZcz 10019   RR+crp 10349   [,)cico 10652   ...cfz 10776   |_cfl 10918    seq cseq 11040   ^cexp 11098   sqrcsqr 11712   abscabs 11713    ~~> cli 11952   O (
1 )co1 11954   sum_csu 12152    || cdivides 12525   Basecbs 13142   0gc0g 13394   ZRHomczrh 16445  ℤ/nczn 16448  DChrcdchr 20465
This theorem is referenced by:  dchrisumn0  20664  rpvmasum  20669
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1538  ax-5 1549  ax-17 1608  ax-9 1641  ax-8 1648  ax-13 1690  ax-14 1692  ax-6 1707  ax-7 1712  ax-11 1719  ax-12 1869  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-inf2 7337  ax-cnex 8788  ax-resscn 8789  ax-1cn 8790  ax-icn 8791  ax-addcl 8792  ax-addrcl 8793  ax-mulcl 8794  ax-mulrcl 8795  ax-mulcom 8796  ax-addass 8797  ax-mulass 8798  ax-distr 8799  ax-i2m1 8800  ax-1ne0 8801  ax-1rid 8802  ax-rnegex 8803  ax-rrecex 8804  ax-cnre 8805  ax-pre-lttri 8806  ax-pre-lttrn 8807  ax-pre-ltadd 8808  ax-pre-mulgt0 8809  ax-pre-sup 8810  ax-addf 8811  ax-mulf 8812
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-fal 1316  df-ex 1534  df-nf 1537  df-sb 1636  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-iin 3909  df-disj 3995  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-se 4352  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-isom 5230  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-of 6039  df-1st 6083  df-2nd 6084  df-tpos 6195  df-rpss 6238  df-iota 6252  df-riota 6299  df-recs 6383  df-rdg 6418  df-1o 6474  df-2o 6475  df-oadd 6478  df-omul 6479  df-er 6655  df-ec 6657  df-qs 6661  df-map 6769  df-pm 6770  df-ixp 6813  df-en 6859  df-dom 6860  df-sdom 6861  df-fin 6862  df-fi 7160  df-sup 7189  df-oi 7220  df-card 7567  df-acn 7570  df-cda 7789  df-pnf 8864  df-mnf 8865  df-xr 8866  df-ltxr 8867  df-le 8868  df-sub 9034  df-neg 9035  df-div 9419  df-nn 9742  df-2 9799  df-3 9800  df-4 9801  df-5 9802  df-6 9803  df-7 9804  df-8 9805  df-9 9806  df-10 9807  df-n0 9961  df-z 10020  df-dec 10120  df-uz 10226  df-q 10312  df-rp 10350  df-xneg 10447  df-xadd 10448  df-xmul 10449  df-ioo 10654  df-ioc 10655  df-ico 10656  df-icc 10657  df-fz 10777  df-fzo 10865  df-fl 10919  df-mod 10968  df-seq 11041  df-exp 11099  df-fac 11283  df-bc 11310  df-hash 11332  df-word 11403  df-concat 11404  df-s1 11405  df-shft 11556  df-cj 11578  df-re 11579  df-im 11580  df-sqr 11714  df-abs 11715  df-limsup 11939  df-clim 11956  df-rlim 11957  df-o1 11958  df-lo1 11959  df-sum 12153  df-ef 12343  df-e 12344  df-sin 12345  df-cos 12346  df-pi 12348  df-dvds 12526  df-gcd 12680  df-prm 12753  df-numer 12800  df-denom 12801  df-phi 12828  df-pc 12884  df-struct 13144  df-ndx 13145  df-slot 13146  df-base 13147  df-sets 13148  df-ress 13149  df-plusg 13215  df-mulr 13216  df-starv 13217  df-sca 13218  df-vsca 13219  df-tset 13221  df-ple 13222  df-ds 13224  df-hom 13226  df-cco 13227  df-rest 13321  df-topn 13322  df-topgen 13338  df-pt 13339  df-prds 13342  df-xrs 13397  df-0g 13398  df-gsum 13399  df-qtop 13404  df-imas 13405  df-divs 13406  df-xps 13407  df-mre 13482  df-mrc 13483  df-acs 13485  df-mnd 14361  df-mhm 14409  df-submnd 14410  df-grp 14483  df-minusg 14484  df-sbg 14485  df-mulg 14486  df-subg 14612  df-nsg 14613  df-eqg 14614  df-ghm 14675  df-gim 14717  df-ga 14738  df-cntz 14787  df-oppg 14813  df-od 14838  df-gex 14839  df-pgp 14840  df-lsm 14941  df-pj1 14942  df-cmn 15085  df-abl 15086  df-cyg 15159  df-dprd 15227  df-dpj 15228  df-mgp 15320  df-rng 15334  df-cring 15335  df-ur 15336  df-oppr 15399  df-dvdsr 15417  df-unit 15418  df-invr 15448  df-dvr 15459  df-rnghom 15490  df-drng 15508  df-subrg 15537  df-lmod 15623  df-lss 15684  df-lsp 15723  df-sra 15919  df-rgmod 15920  df-lidl 15921  df-rsp 15922  df-2idl 15978  df-xmet 16367  df-met 16368  df-bl 16369  df-mopn 16370  df-cnfld 16372  df-zrh 16449  df-zn 16452  df-top 16630  df-bases 16632  df-topon 16633  df-topsp 16634  df-cld 16750  df-ntr 16751  df-cls 16752  df-nei 16829  df-lp 16862  df-perf 16863  df-cn 16951  df-cnp 16952  df-haus 17037  df-cmp 17108  df-tx 17251  df-hmeo 17440  df-fbas 17514  df-fg 17515  df-fil 17535  df-fm 17627  df-flim 17628  df-flf 17629  df-xms 17879  df-ms 17880  df-tms 17881  df-cncf 18376  df-0p 19019  df-limc 19210  df-dv 19211  df-ply 19564  df-idp 19565  df-coe 19566  df-dgr 19567  df-quot 19665  df-log 19908  df-cxp 19909  df-em 20281  df-cht 20328  df-vma 20329  df-chp 20330  df-ppi 20331  df-mu 20332  df-dchr 20466
  Copyright terms: Public domain W3C validator