MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0flb Unicode version

Theorem dchrisum0flb 20654
Description: The divisor sum of a real Dirichlet character, is lower bounded by zero everywhere and one at the squares. Equation 9.4.29 of [Shapiro], p. 382. (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum2.g  |-  G  =  (DChr `  N )
rpvmasum2.d  |-  D  =  ( Base `  G
)
rpvmasum2.1  |-  .1.  =  ( 0g `  G )
dchrisum0f.f  |-  F  =  ( b  e.  NN  |->  sum_ v  e.  { q  e.  NN  |  q 
||  b }  ( X `  ( L `  v ) ) )
dchrisum0f.x  |-  ( ph  ->  X  e.  D )
dchrisum0flb.r  |-  ( ph  ->  X : ( Base `  Z ) --> RR )
dchrisum0flb.a  |-  ( ph  ->  A  e.  NN )
Assertion
Ref Expression
dchrisum0flb  |-  ( ph  ->  if ( ( sqr `  A )  e.  NN ,  1 ,  0 )  <_  ( F `  A ) )
Distinct variable groups:    q, b,
v, A    N, q    L, b, v    X, b, v
Dummy variables  k 
y  i  p are mutually distinct and distinct from all other variables.
Allowed substitution hints:    ph( v, q, b)    D( v, q, b)    .1. ( v, q, b)    F( v, q, b)    G( v, q, b)    L( q)    N( v, b)    X( q)    Z( v, q, b)

Proof of Theorem dchrisum0flb
StepHypRef Expression
1 dchrisum0flb.a . . . 4  |-  ( ph  ->  A  e.  NN )
2 nnuz 10259 . . . 4  |-  NN  =  ( ZZ>= `  1 )
31, 2syl6eleq 2375 . . 3  |-  ( ph  ->  A  e.  ( ZZ>= ` 
1 ) )
4 eluzfz2 10799 . . 3  |-  ( A  e.  ( ZZ>= `  1
)  ->  A  e.  ( 1 ... A
) )
53, 4syl 17 . 2  |-  ( ph  ->  A  e.  ( 1 ... A ) )
6 oveq2 5828 . . . . . 6  |-  ( k  =  1  ->  (
1 ... k )  =  ( 1 ... 1
) )
76raleqdv 2744 . . . . 5  |-  ( k  =  1  ->  ( A. y  e.  (
1 ... k ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y )  <->  A. y  e.  ( 1 ... 1
) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) ) )
87imbi2d 309 . . . 4  |-  ( k  =  1  ->  (
( ph  ->  A. y  e.  ( 1 ... k
) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) )  <->  ( ph  ->  A. y  e.  ( 1 ... 1 ) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_  ( F `  y ) ) ) )
9 oveq2 5828 . . . . . 6  |-  ( k  =  i  ->  (
1 ... k )  =  ( 1 ... i
) )
109raleqdv 2744 . . . . 5  |-  ( k  =  i  ->  ( A. y  e.  (
1 ... k ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y )  <->  A. y  e.  ( 1 ... i
) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) ) )
1110imbi2d 309 . . . 4  |-  ( k  =  i  ->  (
( ph  ->  A. y  e.  ( 1 ... k
) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) )  <->  ( ph  ->  A. y  e.  ( 1 ... i ) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_  ( F `  y ) ) ) )
12 oveq2 5828 . . . . . 6  |-  ( k  =  ( i  +  1 )  ->  (
1 ... k )  =  ( 1 ... (
i  +  1 ) ) )
1312raleqdv 2744 . . . . 5  |-  ( k  =  ( i  +  1 )  ->  ( A. y  e.  (
1 ... k ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y )  <->  A. y  e.  ( 1 ... (
i  +  1 ) ) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) ) )
1413imbi2d 309 . . . 4  |-  ( k  =  ( i  +  1 )  ->  (
( ph  ->  A. y  e.  ( 1 ... k
) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) )  <->  ( ph  ->  A. y  e.  ( 1 ... ( i  +  1 ) ) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_  ( F `  y ) ) ) )
15 oveq2 5828 . . . . . 6  |-  ( k  =  A  ->  (
1 ... k )  =  ( 1 ... A
) )
1615raleqdv 2744 . . . . 5  |-  ( k  =  A  ->  ( A. y  e.  (
1 ... k ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y )  <->  A. y  e.  ( 1 ... A
) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) ) )
1716imbi2d 309 . . . 4  |-  ( k  =  A  ->  (
( ph  ->  A. y  e.  ( 1 ... k
) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) )  <->  ( ph  ->  A. y  e.  ( 1 ... A ) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_  ( F `  y ) ) ) )
18 rpvmasum.z . . . . . 6  |-  Z  =  (ℤ/n `  N )
19 rpvmasum.l . . . . . 6  |-  L  =  ( ZRHom `  Z
)
20 rpvmasum.a . . . . . 6  |-  ( ph  ->  N  e.  NN )
21 rpvmasum2.g . . . . . 6  |-  G  =  (DChr `  N )
22 rpvmasum2.d . . . . . 6  |-  D  =  ( Base `  G
)
23 rpvmasum2.1 . . . . . 6  |-  .1.  =  ( 0g `  G )
24 dchrisum0f.f . . . . . 6  |-  F  =  ( b  e.  NN  |->  sum_ v  e.  { q  e.  NN  |  q 
||  b }  ( X `  ( L `  v ) ) )
25 dchrisum0f.x . . . . . 6  |-  ( ph  ->  X  e.  D )
26 dchrisum0flb.r . . . . . 6  |-  ( ph  ->  X : ( Base `  Z ) --> RR )
27 2prm 12769 . . . . . . 7  |-  2  e.  Prime
2827a1i 12 . . . . . 6  |-  ( ph  ->  2  e.  Prime )
29 0nn0 9976 . . . . . . 7  |-  0  e.  NN0
3029a1i 12 . . . . . 6  |-  ( ph  ->  0  e.  NN0 )
3118, 19, 20, 21, 22, 23, 24, 25, 26, 28, 30dchrisum0flblem1 20652 . . . . 5  |-  ( ph  ->  if ( ( sqr `  ( 2 ^ 0 ) )  e.  NN ,  1 ,  0 )  <_  ( F `  ( 2 ^ 0 ) ) )
32 elfz1eq 10802 . . . . . . . . . . . 12  |-  ( y  e.  ( 1 ... 1 )  ->  y  =  1 )
33 2nn0 9978 . . . . . . . . . . . . 13  |-  2  e.  NN0
3433numexp0 13086 . . . . . . . . . . . 12  |-  ( 2 ^ 0 )  =  1
3532, 34syl6eqr 2335 . . . . . . . . . . 11  |-  ( y  e.  ( 1 ... 1 )  ->  y  =  ( 2 ^ 0 ) )
3635fveq2d 5490 . . . . . . . . . 10  |-  ( y  e.  ( 1 ... 1 )  ->  ( sqr `  y )  =  ( sqr `  (
2 ^ 0 ) ) )
3736eleq1d 2351 . . . . . . . . 9  |-  ( y  e.  ( 1 ... 1 )  ->  (
( sqr `  y
)  e.  NN  <->  ( sqr `  ( 2 ^ 0 ) )  e.  NN ) )
3837ifbid 3585 . . . . . . . 8  |-  ( y  e.  ( 1 ... 1 )  ->  if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  =  if ( ( sqr `  ( 2 ^ 0 ) )  e.  NN ,  1 ,  0 ) )
3935fveq2d 5490 . . . . . . . 8  |-  ( y  e.  ( 1 ... 1 )  ->  ( F `  y )  =  ( F `  ( 2 ^ 0 ) ) )
4038, 39breq12d 4038 . . . . . . 7  |-  ( y  e.  ( 1 ... 1 )  ->  ( if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y )  <->  if (
( sqr `  (
2 ^ 0 ) )  e.  NN , 
1 ,  0 )  <_  ( F `  ( 2 ^ 0 ) ) ) )
4140biimprcd 218 . . . . . 6  |-  ( if ( ( sqr `  (
2 ^ 0 ) )  e.  NN , 
1 ,  0 )  <_  ( F `  ( 2 ^ 0 ) )  ->  (
y  e.  ( 1 ... 1 )  ->  if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y ) ) )
4241ralrimiv 2627 . . . . 5  |-  ( if ( ( sqr `  (
2 ^ 0 ) )  e.  NN , 
1 ,  0 )  <_  ( F `  ( 2 ^ 0 ) )  ->  A. y  e.  ( 1 ... 1
) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) )
4331, 42syl 17 . . . 4  |-  ( ph  ->  A. y  e.  ( 1 ... 1 ) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_  ( F `  y ) )
44 simpr 449 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  i  e.  NN )  ->  i  e.  NN )
4544, 2syl6eleq 2375 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  i  e.  NN )  ->  i  e.  ( ZZ>= `  1 )
)
4645adantrr 699 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( i  e.  NN  /\  A. y  e.  ( 1 ... i
) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) ) )  -> 
i  e.  ( ZZ>= ` 
1 ) )
47 eluzp1p1 10249 . . . . . . . . . . . . . 14  |-  ( i  e.  ( ZZ>= `  1
)  ->  ( i  +  1 )  e.  ( ZZ>= `  ( 1  +  1 ) ) )
4846, 47syl 17 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( i  e.  NN  /\  A. y  e.  ( 1 ... i
) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) ) )  -> 
( i  +  1 )  e.  ( ZZ>= `  ( 1  +  1 ) ) )
49 df-2 9800 . . . . . . . . . . . . . 14  |-  2  =  ( 1  +  1 )
5049fveq2i 5489 . . . . . . . . . . . . 13  |-  ( ZZ>= ` 
2 )  =  (
ZZ>= `  ( 1  +  1 ) )
5148, 50syl6eleqr 2376 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( i  e.  NN  /\  A. y  e.  ( 1 ... i
) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) ) )  -> 
( i  +  1 )  e.  ( ZZ>= ` 
2 ) )
52 exprmfct 12784 . . . . . . . . . . . 12  |-  ( ( i  +  1 )  e.  ( ZZ>= `  2
)  ->  E. p  e.  Prime  p  ||  (
i  +  1 ) )
5351, 52syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  NN  /\  A. y  e.  ( 1 ... i
) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) ) )  ->  E. p  e.  Prime  p 
||  ( i  +  1 ) )
5420ad2antrr 708 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
i  e.  NN  /\  A. y  e.  ( 1 ... i ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y ) ) )  /\  ( p  e. 
Prime  /\  p  ||  (
i  +  1 ) ) )  ->  N  e.  NN )
5525ad2antrr 708 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
i  e.  NN  /\  A. y  e.  ( 1 ... i ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y ) ) )  /\  ( p  e. 
Prime  /\  p  ||  (
i  +  1 ) ) )  ->  X  e.  D )
5626ad2antrr 708 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
i  e.  NN  /\  A. y  e.  ( 1 ... i ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y ) ) )  /\  ( p  e. 
Prime  /\  p  ||  (
i  +  1 ) ) )  ->  X : ( Base `  Z
) --> RR )
5751adantr 453 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
i  e.  NN  /\  A. y  e.  ( 1 ... i ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y ) ) )  /\  ( p  e. 
Prime  /\  p  ||  (
i  +  1 ) ) )  ->  (
i  +  1 )  e.  ( ZZ>= `  2
) )
58 simprl 734 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
i  e.  NN  /\  A. y  e.  ( 1 ... i ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y ) ) )  /\  ( p  e. 
Prime  /\  p  ||  (
i  +  1 ) ) )  ->  p  e.  Prime )
59 simprr 735 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
i  e.  NN  /\  A. y  e.  ( 1 ... i ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y ) ) )  /\  ( p  e. 
Prime  /\  p  ||  (
i  +  1 ) ) )  ->  p  ||  ( i  +  1 ) )
60 simplrr 739 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
i  e.  NN  /\  A. y  e.  ( 1 ... i ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y ) ) )  /\  ( p  e. 
Prime  /\  p  ||  (
i  +  1 ) ) )  ->  A. y  e.  ( 1 ... i
) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) )
61 simplrl 738 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
i  e.  NN  /\  A. y  e.  ( 1 ... i ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y ) ) )  /\  ( p  e. 
Prime  /\  p  ||  (
i  +  1 ) ) )  ->  i  e.  NN )
6261nnzd 10112 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
i  e.  NN  /\  A. y  e.  ( 1 ... i ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y ) ) )  /\  ( p  e. 
Prime  /\  p  ||  (
i  +  1 ) ) )  ->  i  e.  ZZ )
63 fzval3 10906 . . . . . . . . . . . . . . . . 17  |-  ( i  e.  ZZ  ->  (
1 ... i )  =  ( 1..^ ( i  +  1 ) ) )
6462, 63syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
i  e.  NN  /\  A. y  e.  ( 1 ... i ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y ) ) )  /\  ( p  e. 
Prime  /\  p  ||  (
i  +  1 ) ) )  ->  (
1 ... i )  =  ( 1..^ ( i  +  1 ) ) )
6564raleqdv 2744 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
i  e.  NN  /\  A. y  e.  ( 1 ... i ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y ) ) )  /\  ( p  e. 
Prime  /\  p  ||  (
i  +  1 ) ) )  ->  ( A. y  e.  (
1 ... i ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y )  <->  A. y  e.  ( 1..^ ( i  +  1 ) ) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_  ( F `  y ) ) )
6660, 65mpbid 203 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
i  e.  NN  /\  A. y  e.  ( 1 ... i ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y ) ) )  /\  ( p  e. 
Prime  /\  p  ||  (
i  +  1 ) ) )  ->  A. y  e.  ( 1..^ ( i  +  1 ) ) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_  ( F `  y ) )
6718, 19, 54, 21, 22, 23, 24, 55, 56, 57, 58, 59, 66dchrisum0flblem2 20653 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
i  e.  NN  /\  A. y  e.  ( 1 ... i ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y ) ) )  /\  ( p  e. 
Prime  /\  p  ||  (
i  +  1 ) ) )  ->  if ( ( sqr `  (
i  +  1 ) )  e.  NN , 
1 ,  0 )  <_  ( F `  ( i  +  1 ) ) )
6867expr 600 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
i  e.  NN  /\  A. y  e.  ( 1 ... i ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y ) ) )  /\  p  e.  Prime )  ->  ( p  ||  ( i  +  1 )  ->  if (
( sqr `  (
i  +  1 ) )  e.  NN , 
1 ,  0 )  <_  ( F `  ( i  +  1 ) ) ) )
6968rexlimdva 2669 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  NN  /\  A. y  e.  ( 1 ... i
) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) ) )  -> 
( E. p  e. 
Prime  p  ||  ( i  +  1 )  ->  if ( ( sqr `  (
i  +  1 ) )  e.  NN , 
1 ,  0 )  <_  ( F `  ( i  +  1 ) ) ) )
7053, 69mpd 16 . . . . . . . . . 10  |-  ( (
ph  /\  ( i  e.  NN  /\  A. y  e.  ( 1 ... i
) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) ) )  ->  if ( ( sqr `  (
i  +  1 ) )  e.  NN , 
1 ,  0 )  <_  ( F `  ( i  +  1 ) ) )
71 ovex 5845 . . . . . . . . . . 11  |-  ( i  +  1 )  e. 
_V
72 fveq2 5486 . . . . . . . . . . . . . 14  |-  ( y  =  ( i  +  1 )  ->  ( sqr `  y )  =  ( sqr `  (
i  +  1 ) ) )
7372eleq1d 2351 . . . . . . . . . . . . 13  |-  ( y  =  ( i  +  1 )  ->  (
( sqr `  y
)  e.  NN  <->  ( sqr `  ( i  +  1 ) )  e.  NN ) )
7473ifbid 3585 . . . . . . . . . . . 12  |-  ( y  =  ( i  +  1 )  ->  if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  =  if ( ( sqr `  ( i  +  1 ) )  e.  NN ,  1 ,  0 ) )
75 fveq2 5486 . . . . . . . . . . . 12  |-  ( y  =  ( i  +  1 )  ->  ( F `  y )  =  ( F `  ( i  +  1 ) ) )
7674, 75breq12d 4038 . . . . . . . . . . 11  |-  ( y  =  ( i  +  1 )  ->  ( if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y )  <->  if (
( sqr `  (
i  +  1 ) )  e.  NN , 
1 ,  0 )  <_  ( F `  ( i  +  1 ) ) ) )
7771, 76ralsn 3676 . . . . . . . . . 10  |-  ( A. y  e.  { (
i  +  1 ) } if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
)  <->  if ( ( sqr `  ( i  +  1 ) )  e.  NN ,  1 ,  0 )  <_  ( F `  ( i  +  1 ) ) )
7870, 77sylibr 205 . . . . . . . . 9  |-  ( (
ph  /\  ( i  e.  NN  /\  A. y  e.  ( 1 ... i
) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) ) )  ->  A. y  e.  { ( i  +  1 ) } if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) )
7978expr 600 . . . . . . . 8  |-  ( (
ph  /\  i  e.  NN )  ->  ( A. y  e.  ( 1 ... i ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y )  ->  A. y  e.  { ( i  +  1 ) } if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y ) ) )
8079ancld 538 . . . . . . 7  |-  ( (
ph  /\  i  e.  NN )  ->  ( A. y  e.  ( 1 ... i ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y )  ->  ( A. y  e.  (
1 ... i ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y )  /\  A. y  e.  { (
i  +  1 ) } if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) ) ) )
81 fzsuc 10830 . . . . . . . . . 10  |-  ( i  e.  ( ZZ>= `  1
)  ->  ( 1 ... ( i  +  1 ) )  =  ( ( 1 ... i )  u.  {
( i  +  1 ) } ) )
8245, 81syl 17 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  NN )  ->  ( 1 ... ( i  +  1 ) )  =  ( ( 1 ... i )  u.  {
( i  +  1 ) } ) )
8382raleqdv 2744 . . . . . . . 8  |-  ( (
ph  /\  i  e.  NN )  ->  ( A. y  e.  ( 1 ... ( i  +  1 ) ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y )  <->  A. y  e.  ( ( 1 ... i )  u.  {
( i  +  1 ) } ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y ) ) )
84 ralunb 3358 . . . . . . . 8  |-  ( A. y  e.  ( (
1 ... i )  u. 
{ ( i  +  1 ) } ) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_  ( F `  y )  <->  ( A. y  e.  ( 1 ... i ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y )  /\  A. y  e.  { (
i  +  1 ) } if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) ) )
8583, 84syl6bb 254 . . . . . . 7  |-  ( (
ph  /\  i  e.  NN )  ->  ( A. y  e.  ( 1 ... ( i  +  1 ) ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y )  <->  ( A. y  e.  ( 1 ... i ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y )  /\  A. y  e.  { (
i  +  1 ) } if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) ) ) )
8680, 85sylibrd 227 . . . . . 6  |-  ( (
ph  /\  i  e.  NN )  ->  ( A. y  e.  ( 1 ... i ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y )  ->  A. y  e.  ( 1 ... (
i  +  1 ) ) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) ) )
8786expcom 426 . . . . 5  |-  ( i  e.  NN  ->  ( ph  ->  ( A. y  e.  ( 1 ... i
) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
)  ->  A. y  e.  ( 1 ... (
i  +  1 ) ) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) ) ) )
8887a2d 25 . . . 4  |-  ( i  e.  NN  ->  (
( ph  ->  A. y  e.  ( 1 ... i
) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) )  ->  ( ph  ->  A. y  e.  ( 1 ... ( i  +  1 ) ) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_  ( F `  y ) ) ) )
898, 11, 14, 17, 43, 88nnind 9760 . . 3  |-  ( A  e.  NN  ->  ( ph  ->  A. y  e.  ( 1 ... A ) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_  ( F `  y ) ) )
901, 89mpcom 34 . 2  |-  ( ph  ->  A. y  e.  ( 1 ... A ) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_  ( F `  y ) )
91 fveq2 5486 . . . . . 6  |-  ( y  =  A  ->  ( sqr `  y )  =  ( sqr `  A
) )
9291eleq1d 2351 . . . . 5  |-  ( y  =  A  ->  (
( sqr `  y
)  e.  NN  <->  ( sqr `  A )  e.  NN ) )
9392ifbid 3585 . . . 4  |-  ( y  =  A  ->  if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  =  if ( ( sqr `  A )  e.  NN ,  1 ,  0 ) )
94 fveq2 5486 . . . 4  |-  ( y  =  A  ->  ( F `  y )  =  ( F `  A ) )
9593, 94breq12d 4038 . . 3  |-  ( y  =  A  ->  ( if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y )  <->  if (
( sqr `  A
)  e.  NN , 
1 ,  0 )  <_  ( F `  A ) ) )
9695rspcv 2882 . 2  |-  ( A  e.  ( 1 ... A )  ->  ( A. y  e.  (
1 ... A ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y )  ->  if ( ( sqr `  A
)  e.  NN , 
1 ,  0 )  <_  ( F `  A ) ) )
975, 90, 96sylc 58 1  |-  ( ph  ->  if ( ( sqr `  A )  e.  NN ,  1 ,  0 )  <_  ( F `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1624    e. wcel 1685   A.wral 2545   E.wrex 2546   {crab 2549    u. cun 3152   ifcif 3567   {csn 3642   class class class wbr 4025    e. cmpt 4079   -->wf 5218   ` cfv 5222  (class class class)co 5820   RRcr 8732   0cc0 8733   1c1 8734    + caddc 8736    <_ cle 8864   NNcn 9742   2c2 9791   NN0cn0 9961   ZZcz 10020   ZZ>=cuz 10226   ...cfz 10777  ..^cfzo 10865   ^cexp 11099   sqrcsqr 11713   sum_csu 12153    || cdivides 12526   Primecprime 12753   Basecbs 13143   0gc0g 13395   ZRHomczrh 16446  ℤ/nczn 16449  DChrcdchr 20466
This theorem is referenced by:  dchrisum0fno1  20655
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7338  ax-cnex 8789  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-pre-mulgt0 8810  ax-pre-sup 8811  ax-addf 8812  ax-mulf 8813
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-iin 3910  df-disj 3996  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-fun 5224  df-fn 5225  df-f 5226  df-f1 5227  df-fo 5228  df-f1o 5229  df-fv 5230  df-isom 5231  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-of 6040  df-1st 6084  df-2nd 6085  df-tpos 6196  df-iota 6253  df-riota 6300  df-recs 6384  df-rdg 6419  df-1o 6475  df-2o 6476  df-oadd 6479  df-omul 6480  df-er 6656  df-ec 6658  df-qs 6662  df-map 6770  df-pm 6771  df-ixp 6814  df-en 6860  df-dom 6861  df-sdom 6862  df-fin 6863  df-fi 7161  df-sup 7190  df-oi 7221  df-card 7568  df-acn 7571  df-cda 7790  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-sub 9035  df-neg 9036  df-div 9420  df-nn 9743  df-2 9800  df-3 9801  df-4 9802  df-5 9803  df-6 9804  df-7 9805  df-8 9806  df-9 9807  df-10 9808  df-n0 9962  df-z 10021  df-dec 10121  df-uz 10227  df-q 10313  df-rp 10351  df-xneg 10448  df-xadd 10449  df-xmul 10450  df-ioo 10655  df-ioc 10656  df-ico 10657  df-icc 10658  df-fz 10778  df-fzo 10866  df-fl 10920  df-mod 10969  df-seq 11042  df-exp 11100  df-fac 11284  df-bc 11311  df-hash 11333  df-shft 11557  df-cj 11579  df-re 11580  df-im 11581  df-sqr 11715  df-abs 11716  df-limsup 11940  df-clim 11957  df-rlim 11958  df-sum 12154  df-ef 12344  df-sin 12346  df-cos 12347  df-pi 12349  df-dvds 12527  df-gcd 12681  df-prm 12754  df-numer 12801  df-denom 12802  df-pc 12885  df-struct 13145  df-ndx 13146  df-slot 13147  df-base 13148  df-sets 13149  df-ress 13150  df-plusg 13216  df-mulr 13217  df-starv 13218  df-sca 13219  df-vsca 13220  df-tset 13222  df-ple 13223  df-ds 13225  df-hom 13227  df-cco 13228  df-rest 13322  df-topn 13323  df-topgen 13339  df-pt 13340  df-prds 13343  df-xrs 13398  df-0g 13399  df-gsum 13400  df-qtop 13405  df-imas 13406  df-divs 13407  df-xps 13408  df-mre 13483  df-mrc 13484  df-acs 13486  df-mnd 14362  df-mhm 14410  df-submnd 14411  df-grp 14484  df-minusg 14485  df-sbg 14486  df-mulg 14487  df-subg 14613  df-nsg 14614  df-eqg 14615  df-ghm 14676  df-cntz 14788  df-od 14839  df-cmn 15086  df-abl 15087  df-mgp 15321  df-rng 15335  df-cring 15336  df-ur 15337  df-oppr 15400  df-dvdsr 15418  df-unit 15419  df-invr 15449  df-dvr 15460  df-rnghom 15491  df-drng 15509  df-subrg 15538  df-lmod 15624  df-lss 15685  df-lsp 15724  df-sra 15920  df-rgmod 15921  df-lidl 15922  df-rsp 15923  df-2idl 15979  df-xmet 16368  df-met 16369  df-bl 16370  df-mopn 16371  df-cnfld 16373  df-zrh 16450  df-zn 16453  df-top 16631  df-bases 16633  df-topon 16634  df-topsp 16635  df-cld 16751  df-ntr 16752  df-cls 16753  df-nei 16830  df-lp 16863  df-perf 16864  df-cn 16952  df-cnp 16953  df-haus 17038  df-tx 17252  df-hmeo 17441  df-fbas 17515  df-fg 17516  df-fil 17536  df-fm 17628  df-flim 17629  df-flf 17630  df-xms 17880  df-ms 17881  df-tms 17882  df-cncf 18377  df-limc 19211  df-dv 19212  df-log 19909  df-cxp 19910  df-dchr 20467
  Copyright terms: Public domain W3C validator