MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0flblem2 Unicode version

Theorem dchrisum0flblem2 20674
Description: Lemma for dchrisum0flb 20675. Induction over relatively prime factors, with the prime power case handled in dchrisum0flblem1 . (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum2.g  |-  G  =  (DChr `  N )
rpvmasum2.d  |-  D  =  ( Base `  G
)
rpvmasum2.1  |-  .1.  =  ( 0g `  G )
dchrisum0f.f  |-  F  =  ( b  e.  NN  |->  sum_ v  e.  { q  e.  NN  |  q 
||  b }  ( X `  ( L `  v ) ) )
dchrisum0f.x  |-  ( ph  ->  X  e.  D )
dchrisum0flb.r  |-  ( ph  ->  X : ( Base `  Z ) --> RR )
dchrisum0flb.1  |-  ( ph  ->  A  e.  ( ZZ>= ` 
2 ) )
dchrisum0flb.2  |-  ( ph  ->  P  e.  Prime )
dchrisum0flb.3  |-  ( ph  ->  P  ||  A )
dchrisum0flb.4  |-  ( ph  ->  A. y  e.  ( 1..^ A ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y ) )
Assertion
Ref Expression
dchrisum0flblem2  |-  ( ph  ->  if ( ( sqr `  A )  e.  NN ,  1 ,  0 )  <_  ( F `  A ) )
Distinct variable groups:    y,  .1.    y, F    q, b, v, y, A    N, q,
y    P, b, q, v, y    y, Z    y, D    L, b, v, y    X, b, v, y
Allowed substitution hints:    ph( y, v, q, b)    D( v, q, b)    .1. ( v,
q, b)    F( v,
q, b)    G( y,
v, q, b)    L( q)    N( v, b)    X( q)    Z( v, q, b)

Proof of Theorem dchrisum0flblem2
StepHypRef Expression
1 breq1 4042 . . 3  |-  ( 1  =  if ( ( sqr `  A )  e.  NN ,  1 ,  0 )  -> 
( 1  <_  (
( F `  ( P ^ ( P  pCnt  A ) ) )  x.  ( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) )  <->  if ( ( sqr `  A )  e.  NN ,  1 ,  0 )  <_  ( ( F `  ( P ^ ( P  pCnt  A ) ) )  x.  ( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) ) ) )
2 breq1 4042 . . 3  |-  ( 0  =  if ( ( sqr `  A )  e.  NN ,  1 ,  0 )  -> 
( 0  <_  (
( F `  ( P ^ ( P  pCnt  A ) ) )  x.  ( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) )  <->  if ( ( sqr `  A )  e.  NN ,  1 ,  0 )  <_  ( ( F `  ( P ^ ( P  pCnt  A ) ) )  x.  ( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) ) ) )
3 1t1e1 9886 . . . 4  |-  ( 1  x.  1 )  =  1
4 dchrisum0flb.2 . . . . . . . . . . . . . . 15  |-  ( ph  ->  P  e.  Prime )
54adantr 451 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  P  e.  Prime )
6 nnq 10345 . . . . . . . . . . . . . . 15  |-  ( ( sqr `  A )  e.  NN  ->  ( sqr `  A )  e.  QQ )
76adantl 452 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( sqr `  A
)  e.  QQ )
8 nnne0 9794 . . . . . . . . . . . . . . 15  |-  ( ( sqr `  A )  e.  NN  ->  ( sqr `  A )  =/=  0 )
98adantl 452 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( sqr `  A
)  =/=  0 )
10 2z 10070 . . . . . . . . . . . . . . 15  |-  2  e.  ZZ
1110a1i 10 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  2  e.  ZZ )
12 pcexp 12928 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  (
( sqr `  A
)  e.  QQ  /\  ( sqr `  A )  =/=  0 )  /\  2  e.  ZZ )  ->  ( P  pCnt  (
( sqr `  A
) ^ 2 ) )  =  ( 2  x.  ( P  pCnt  ( sqr `  A ) ) ) )
135, 7, 9, 11, 12syl121anc 1187 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( P  pCnt  ( ( sqr `  A
) ^ 2 ) )  =  ( 2  x.  ( P  pCnt  ( sqr `  A ) ) ) )
14 dchrisum0flb.1 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  A  e.  ( ZZ>= ` 
2 ) )
15 eluz2b2 10306 . . . . . . . . . . . . . . . . . . 19  |-  ( A  e.  ( ZZ>= `  2
)  <->  ( A  e.  NN  /\  1  < 
A ) )
1615simplbi 446 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  ( ZZ>= `  2
)  ->  A  e.  NN )
1714, 16syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A  e.  NN )
1817nncnd 9778 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A  e.  CC )
1918adantr 451 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  A  e.  CC )
2019sqsqrd 11937 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( ( sqr `  A ) ^ 2 )  =  A )
2120oveq2d 5890 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( P  pCnt  ( ( sqr `  A
) ^ 2 ) )  =  ( P 
pCnt  A ) )
22 2cn 9832 . . . . . . . . . . . . . . 15  |-  2  e.  CC
2322a1i 10 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  2  e.  CC )
24 simpr 447 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( sqr `  A
)  e.  NN )
255, 24pccld 12919 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( P  pCnt  ( sqr `  A ) )  e.  NN0 )
2625nn0cnd 10036 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( P  pCnt  ( sqr `  A ) )  e.  CC )
2723, 26mulcomd 8872 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( 2  x.  ( P  pCnt  ( sqr `  A ) ) )  =  ( ( P  pCnt  ( sqr `  A ) )  x.  2 ) )
2813, 21, 273eqtr3rd 2337 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( ( P 
pCnt  ( sqr `  A
) )  x.  2 )  =  ( P 
pCnt  A ) )
2928oveq2d 5890 . . . . . . . . . . 11  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( P ^
( ( P  pCnt  ( sqr `  A ) )  x.  2 ) )  =  ( P ^ ( P  pCnt  A ) ) )
30 prmnn 12777 . . . . . . . . . . . . . 14  |-  ( P  e.  Prime  ->  P  e.  NN )
315, 30syl 15 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  P  e.  NN )
3231nncnd 9778 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  P  e.  CC )
33 2nn0 9998 . . . . . . . . . . . . 13  |-  2  e.  NN0
3433a1i 10 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  2  e.  NN0 )
3532, 34, 25expmuld 11264 . . . . . . . . . . 11  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( P ^
( ( P  pCnt  ( sqr `  A ) )  x.  2 ) )  =  ( ( P ^ ( P 
pCnt  ( sqr `  A
) ) ) ^
2 ) )
3629, 35eqtr3d 2330 . . . . . . . . . 10  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( P ^
( P  pCnt  A
) )  =  ( ( P ^ ( P  pCnt  ( sqr `  A
) ) ) ^
2 ) )
3736fveq2d 5545 . . . . . . . . 9  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( sqr `  ( P ^ ( P  pCnt  A ) ) )  =  ( sqr `  (
( P ^ ( P  pCnt  ( sqr `  A
) ) ) ^
2 ) ) )
3831, 25nnexpcld 11282 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( P ^
( P  pCnt  ( sqr `  A ) ) )  e.  NN )
3938nnrpd 10405 . . . . . . . . . . 11  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( P ^
( P  pCnt  ( sqr `  A ) ) )  e.  RR+ )
4039rprege0d 10413 . . . . . . . . . 10  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( ( P ^ ( P  pCnt  ( sqr `  A ) ) )  e.  RR  /\  0  <_  ( P ^ ( P  pCnt  ( sqr `  A ) ) ) ) )
41 sqrsq 11771 . . . . . . . . . 10  |-  ( ( ( P ^ ( P  pCnt  ( sqr `  A
) ) )  e.  RR  /\  0  <_ 
( P ^ ( P  pCnt  ( sqr `  A
) ) ) )  ->  ( sqr `  (
( P ^ ( P  pCnt  ( sqr `  A
) ) ) ^
2 ) )  =  ( P ^ ( P  pCnt  ( sqr `  A
) ) ) )
4240, 41syl 15 . . . . . . . . 9  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( sqr `  (
( P ^ ( P  pCnt  ( sqr `  A
) ) ) ^
2 ) )  =  ( P ^ ( P  pCnt  ( sqr `  A
) ) ) )
4337, 42eqtrd 2328 . . . . . . . 8  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( sqr `  ( P ^ ( P  pCnt  A ) ) )  =  ( P ^ ( P  pCnt  ( sqr `  A
) ) ) )
4443, 38eqeltrd 2370 . . . . . . 7  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( sqr `  ( P ^ ( P  pCnt  A ) ) )  e.  NN )
45 iftrue 3584 . . . . . . 7  |-  ( ( sqr `  ( P ^ ( P  pCnt  A ) ) )  e.  NN  ->  if (
( sqr `  ( P ^ ( P  pCnt  A ) ) )  e.  NN ,  1 ,  0 )  =  1 )
4644, 45syl 15 . . . . . 6  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  if ( ( sqr `  ( P ^ ( P  pCnt  A ) ) )  e.  NN ,  1 ,  0 )  =  1 )
47 rpvmasum.z . . . . . . . 8  |-  Z  =  (ℤ/n `  N )
48 rpvmasum.l . . . . . . . 8  |-  L  =  ( ZRHom `  Z
)
49 rpvmasum.a . . . . . . . 8  |-  ( ph  ->  N  e.  NN )
50 rpvmasum2.g . . . . . . . 8  |-  G  =  (DChr `  N )
51 rpvmasum2.d . . . . . . . 8  |-  D  =  ( Base `  G
)
52 rpvmasum2.1 . . . . . . . 8  |-  .1.  =  ( 0g `  G )
53 dchrisum0f.f . . . . . . . 8  |-  F  =  ( b  e.  NN  |->  sum_ v  e.  { q  e.  NN  |  q 
||  b }  ( X `  ( L `  v ) ) )
54 dchrisum0f.x . . . . . . . 8  |-  ( ph  ->  X  e.  D )
55 dchrisum0flb.r . . . . . . . 8  |-  ( ph  ->  X : ( Base `  Z ) --> RR )
564, 17pccld 12919 . . . . . . . 8  |-  ( ph  ->  ( P  pCnt  A
)  e.  NN0 )
5747, 48, 49, 50, 51, 52, 53, 54, 55, 4, 56dchrisum0flblem1 20673 . . . . . . 7  |-  ( ph  ->  if ( ( sqr `  ( P ^ ( P  pCnt  A ) ) )  e.  NN , 
1 ,  0 )  <_  ( F `  ( P ^ ( P 
pCnt  A ) ) ) )
5857adantr 451 . . . . . 6  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  if ( ( sqr `  ( P ^ ( P  pCnt  A ) ) )  e.  NN ,  1 ,  0 )  <_  ( F `  ( P ^ ( P  pCnt  A ) ) ) )
5946, 58eqbrtrrd 4061 . . . . 5  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  1  <_  ( F `  ( P ^ ( P  pCnt  A ) ) ) )
60 pcdvds 12932 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  ( P ^ ( P  pCnt  A ) )  ||  A
)
614, 17, 60syl2anc 642 . . . . . . . . . . . 12  |-  ( ph  ->  ( P ^ ( P  pCnt  A ) ) 
||  A )
624, 30syl 15 . . . . . . . . . . . . . 14  |-  ( ph  ->  P  e.  NN )
6362, 56nnexpcld 11282 . . . . . . . . . . . . 13  |-  ( ph  ->  ( P ^ ( P  pCnt  A ) )  e.  NN )
64 nndivdvds 12553 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN  /\  ( P ^ ( P 
pCnt  A ) )  e.  NN )  ->  (
( P ^ ( P  pCnt  A ) ) 
||  A  <->  ( A  /  ( P ^
( P  pCnt  A
) ) )  e.  NN ) )
6517, 63, 64syl2anc 642 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( P ^
( P  pCnt  A
) )  ||  A  <->  ( A  /  ( P ^ ( P  pCnt  A ) ) )  e.  NN ) )
6661, 65mpbid 201 . . . . . . . . . . 11  |-  ( ph  ->  ( A  /  ( P ^ ( P  pCnt  A ) ) )  e.  NN )
6766nnzd 10132 . . . . . . . . . 10  |-  ( ph  ->  ( A  /  ( P ^ ( P  pCnt  A ) ) )  e.  ZZ )
6867adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( A  / 
( P ^ ( P  pCnt  A ) ) )  e.  ZZ )
6917adantr 451 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  A  e.  NN )
7069nnrpd 10405 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  A  e.  RR+ )
7170rprege0d 10413 . . . . . . . . . . 11  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( A  e.  RR  /\  0  <_  A ) )
7263adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( P ^
( P  pCnt  A
) )  e.  NN )
7372nnrpd 10405 . . . . . . . . . . 11  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( P ^
( P  pCnt  A
) )  e.  RR+ )
74 sqrdiv 11767 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( P ^ ( P  pCnt  A ) )  e.  RR+ )  ->  ( sqr `  ( A  / 
( P ^ ( P  pCnt  A ) ) ) )  =  ( ( sqr `  A
)  /  ( sqr `  ( P ^ ( P  pCnt  A ) ) ) ) )
7571, 73, 74syl2anc 642 . . . . . . . . . 10  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  =  ( ( sqr `  A )  /  ( sqr `  ( P ^
( P  pCnt  A
) ) ) ) )
76 nnz 10061 . . . . . . . . . . . 12  |-  ( ( sqr `  A )  e.  NN  ->  ( sqr `  A )  e.  ZZ )
7776adantl 452 . . . . . . . . . . 11  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( sqr `  A
)  e.  ZZ )
78 znq 10336 . . . . . . . . . . 11  |-  ( ( ( sqr `  A
)  e.  ZZ  /\  ( sqr `  ( P ^ ( P  pCnt  A ) ) )  e.  NN )  ->  (
( sqr `  A
)  /  ( sqr `  ( P ^ ( P  pCnt  A ) ) ) )  e.  QQ )
7977, 44, 78syl2anc 642 . . . . . . . . . 10  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( ( sqr `  A )  /  ( sqr `  ( P ^
( P  pCnt  A
) ) ) )  e.  QQ )
8075, 79eqeltrd 2370 . . . . . . . . 9  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  QQ )
81 zsqrelqelz 12845 . . . . . . . . 9  |-  ( ( ( A  /  ( P ^ ( P  pCnt  A ) ) )  e.  ZZ  /\  ( sqr `  ( A  /  ( P ^ ( P  pCnt  A ) ) ) )  e.  QQ )  -> 
( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  ZZ )
8268, 80, 81syl2anc 642 . . . . . . . 8  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  ZZ )
8366adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( A  / 
( P ^ ( P  pCnt  A ) ) )  e.  NN )
8483nnrpd 10405 . . . . . . . . 9  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( A  / 
( P ^ ( P  pCnt  A ) ) )  e.  RR+ )
8584sqrgt0d 11911 . . . . . . . 8  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  0  <  ( sqr `  ( A  / 
( P ^ ( P  pCnt  A ) ) ) ) )
86 elnnz 10050 . . . . . . . 8  |-  ( ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN  <->  ( ( sqr `  ( A  / 
( P ^ ( P  pCnt  A ) ) ) )  e.  ZZ  /\  0  <  ( sqr `  ( A  /  ( P ^ ( P  pCnt  A ) ) ) ) ) )
8782, 85, 86sylanbrc 645 . . . . . . 7  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN )
88 iftrue 3584 . . . . . . 7  |-  ( ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN  ->  if ( ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN ,  1 ,  0 )  =  1 )
8987, 88syl 15 . . . . . 6  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  if ( ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN ,  1 ,  0 )  =  1 )
90 nnuz 10279 . . . . . . . . . 10  |-  NN  =  ( ZZ>= `  1 )
9166, 90syl6eleq 2386 . . . . . . . . 9  |-  ( ph  ->  ( A  /  ( P ^ ( P  pCnt  A ) ) )  e.  ( ZZ>= `  1 )
)
9217nnzd 10132 . . . . . . . . 9  |-  ( ph  ->  A  e.  ZZ )
9362nnred 9777 . . . . . . . . . . . 12  |-  ( ph  ->  P  e.  RR )
94 dchrisum0flb.3 . . . . . . . . . . . . 13  |-  ( ph  ->  P  ||  A )
95 pcelnn 12938 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  (
( P  pCnt  A
)  e.  NN  <->  P  ||  A
) )
964, 17, 95syl2anc 642 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( P  pCnt  A )  e.  NN  <->  P  ||  A
) )
9794, 96mpbird 223 . . . . . . . . . . . 12  |-  ( ph  ->  ( P  pCnt  A
)  e.  NN )
98 prmuz2 12792 . . . . . . . . . . . . 13  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
99 eluz2b2 10306 . . . . . . . . . . . . . 14  |-  ( P  e.  ( ZZ>= `  2
)  <->  ( P  e.  NN  /\  1  < 
P ) )
10099simprbi 450 . . . . . . . . . . . . 13  |-  ( P  e.  ( ZZ>= `  2
)  ->  1  <  P )
1014, 98, 1003syl 18 . . . . . . . . . . . 12  |-  ( ph  ->  1  <  P )
102 expgt1 11156 . . . . . . . . . . . 12  |-  ( ( P  e.  RR  /\  ( P  pCnt  A )  e.  NN  /\  1  <  P )  ->  1  <  ( P ^ ( P  pCnt  A ) ) )
10393, 97, 101, 102syl3anc 1182 . . . . . . . . . . 11  |-  ( ph  ->  1  <  ( P ^ ( P  pCnt  A ) ) )
104 1re 8853 . . . . . . . . . . . . 13  |-  1  e.  RR
105104a1i 10 . . . . . . . . . . . 12  |-  ( ph  ->  1  e.  RR )
10663nnred 9777 . . . . . . . . . . . 12  |-  ( ph  ->  ( P ^ ( P  pCnt  A ) )  e.  RR )
10717nnred 9777 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  RR )
108 0lt1 9312 . . . . . . . . . . . . 13  |-  0  <  1
109108a1i 10 . . . . . . . . . . . 12  |-  ( ph  ->  0  <  1 )
11063nngt0d 9805 . . . . . . . . . . . 12  |-  ( ph  ->  0  <  ( P ^ ( P  pCnt  A ) ) )
11117nngt0d 9805 . . . . . . . . . . . 12  |-  ( ph  ->  0  <  A )
112 ltdiv2OLD 9658 . . . . . . . . . . . 12  |-  ( ( ( 1  e.  RR  /\  ( P ^ ( P  pCnt  A ) )  e.  RR  /\  A  e.  RR )  /\  (
0  <  1  /\  0  <  ( P ^
( P  pCnt  A
) )  /\  0  <  A ) )  -> 
( 1  <  ( P ^ ( P  pCnt  A ) )  <->  ( A  /  ( P ^
( P  pCnt  A
) ) )  < 
( A  /  1
) ) )
113105, 106, 107, 109, 110, 111, 112syl33anc 1197 . . . . . . . . . . 11  |-  ( ph  ->  ( 1  <  ( P ^ ( P  pCnt  A ) )  <->  ( A  /  ( P ^
( P  pCnt  A
) ) )  < 
( A  /  1
) ) )
114103, 113mpbid 201 . . . . . . . . . 10  |-  ( ph  ->  ( A  /  ( P ^ ( P  pCnt  A ) ) )  < 
( A  /  1
) )
11518div1d 9544 . . . . . . . . . 10  |-  ( ph  ->  ( A  /  1
)  =  A )
116114, 115breqtrd 4063 . . . . . . . . 9  |-  ( ph  ->  ( A  /  ( P ^ ( P  pCnt  A ) ) )  < 
A )
117 elfzo2 10894 . . . . . . . . 9  |-  ( ( A  /  ( P ^ ( P  pCnt  A ) ) )  e.  ( 1..^ A )  <-> 
( ( A  / 
( P ^ ( P  pCnt  A ) ) )  e.  ( ZZ>= ` 
1 )  /\  A  e.  ZZ  /\  ( A  /  ( P ^
( P  pCnt  A
) ) )  < 
A ) )
11891, 92, 116, 117syl3anbrc 1136 . . . . . . . 8  |-  ( ph  ->  ( A  /  ( P ^ ( P  pCnt  A ) ) )  e.  ( 1..^ A ) )
119 dchrisum0flb.4 . . . . . . . 8  |-  ( ph  ->  A. y  e.  ( 1..^ A ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y ) )
120 fveq2 5541 . . . . . . . . . . . 12  |-  ( y  =  ( A  / 
( P ^ ( P  pCnt  A ) ) )  ->  ( sqr `  y )  =  ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) )
121120eleq1d 2362 . . . . . . . . . . 11  |-  ( y  =  ( A  / 
( P ^ ( P  pCnt  A ) ) )  ->  ( ( sqr `  y )  e.  NN  <->  ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN ) )
122121ifbid 3596 . . . . . . . . . 10  |-  ( y  =  ( A  / 
( P ^ ( P  pCnt  A ) ) )  ->  if (
( sqr `  y
)  e.  NN , 
1 ,  0 )  =  if ( ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN ,  1 ,  0 ) )
123 fveq2 5541 . . . . . . . . . 10  |-  ( y  =  ( A  / 
( P ^ ( P  pCnt  A ) ) )  ->  ( F `  y )  =  ( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) )
124122, 123breq12d 4052 . . . . . . . . 9  |-  ( y  =  ( A  / 
( P ^ ( P  pCnt  A ) ) )  ->  ( if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y )  <->  if (
( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN ,  1 ,  0 )  <_ 
( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) ) )
125124rspcv 2893 . . . . . . . 8  |-  ( ( A  /  ( P ^ ( P  pCnt  A ) ) )  e.  ( 1..^ A )  ->  ( A. y  e.  ( 1..^ A ) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_  ( F `  y )  ->  if ( ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN ,  1 ,  0 )  <_ 
( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) ) )
126118, 119, 125sylc 56 . . . . . . 7  |-  ( ph  ->  if ( ( sqr `  ( A  /  ( P ^ ( P  pCnt  A ) ) ) )  e.  NN ,  1 ,  0 )  <_ 
( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) )
127126adantr 451 . . . . . 6  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  if ( ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN ,  1 ,  0 )  <_ 
( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) )
12889, 127eqbrtrrd 4061 . . . . 5  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  1  <_  ( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) )
129 0le1 9313 . . . . . . . 8  |-  0  <_  1
130104, 129pm3.2i 441 . . . . . . 7  |-  ( 1  e.  RR  /\  0  <_  1 )
131130a1i 10 . . . . . 6  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( 1  e.  RR  /\  0  <_ 
1 ) )
13247, 48, 49, 50, 51, 52, 53, 54, 55dchrisum0ff 20672 . . . . . . . 8  |-  ( ph  ->  F : NN --> RR )
133 ffvelrn 5679 . . . . . . . 8  |-  ( ( F : NN --> RR  /\  ( P ^ ( P 
pCnt  A ) )  e.  NN )  ->  ( F `  ( P ^ ( P  pCnt  A ) ) )  e.  RR )
134132, 63, 133syl2anc 642 . . . . . . 7  |-  ( ph  ->  ( F `  ( P ^ ( P  pCnt  A ) ) )  e.  RR )
135134adantr 451 . . . . . 6  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( F `  ( P ^ ( P 
pCnt  A ) ) )  e.  RR )
136 ffvelrn 5679 . . . . . . . 8  |-  ( ( F : NN --> RR  /\  ( A  /  ( P ^ ( P  pCnt  A ) ) )  e.  NN )  ->  ( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  RR )
137132, 66, 136syl2anc 642 . . . . . . 7  |-  ( ph  ->  ( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  RR )
138137adantr 451 . . . . . 6  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( F `  ( A  /  ( P ^ ( P  pCnt  A ) ) ) )  e.  RR )
139 lemul12a 9630 . . . . . 6  |-  ( ( ( ( 1  e.  RR  /\  0  <_ 
1 )  /\  ( F `  ( P ^ ( P  pCnt  A ) ) )  e.  RR )  /\  (
( 1  e.  RR  /\  0  <_  1 )  /\  ( F `  ( A  /  ( P ^ ( P  pCnt  A ) ) ) )  e.  RR ) )  ->  ( ( 1  <_  ( F `  ( P ^ ( P 
pCnt  A ) ) )  /\  1  <_  ( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) )  ->  ( 1  x.  1 )  <_ 
( ( F `  ( P ^ ( P 
pCnt  A ) ) )  x.  ( F `  ( A  /  ( P ^ ( P  pCnt  A ) ) ) ) ) ) )
140131, 135, 131, 138, 139syl22anc 1183 . . . . 5  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( ( 1  <_  ( F `  ( P ^ ( P 
pCnt  A ) ) )  /\  1  <_  ( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) )  ->  ( 1  x.  1 )  <_ 
( ( F `  ( P ^ ( P 
pCnt  A ) ) )  x.  ( F `  ( A  /  ( P ^ ( P  pCnt  A ) ) ) ) ) ) )
14159, 128, 140mp2and 660 . . . 4  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( 1  x.  1 )  <_  (
( F `  ( P ^ ( P  pCnt  A ) ) )  x.  ( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) ) )
1423, 141syl5eqbrr 4073 . . 3  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  1  <_  (
( F `  ( P ^ ( P  pCnt  A ) ) )  x.  ( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) ) )
143 0re 8854 . . . . . . 7  |-  0  e.  RR
144143a1i 10 . . . . . 6  |-  ( ph  ->  0  e.  RR )
145104, 143keepel 3635 . . . . . . 7  |-  if ( ( sqr `  ( P ^ ( P  pCnt  A ) ) )  e.  NN ,  1 ,  0 )  e.  RR
146145a1i 10 . . . . . 6  |-  ( ph  ->  if ( ( sqr `  ( P ^ ( P  pCnt  A ) ) )  e.  NN , 
1 ,  0 )  e.  RR )
147 breq2 4043 . . . . . . . 8  |-  ( 1  =  if ( ( sqr `  ( P ^ ( P  pCnt  A ) ) )  e.  NN ,  1 ,  0 )  ->  (
0  <_  1  <->  0  <_  if ( ( sqr `  ( P ^ ( P  pCnt  A ) ) )  e.  NN ,  1 ,  0 ) ) )
148 breq2 4043 . . . . . . . 8  |-  ( 0  =  if ( ( sqr `  ( P ^ ( P  pCnt  A ) ) )  e.  NN ,  1 ,  0 )  ->  (
0  <_  0  <->  0  <_  if ( ( sqr `  ( P ^ ( P  pCnt  A ) ) )  e.  NN ,  1 ,  0 ) ) )
149 0le0 9843 . . . . . . . 8  |-  0  <_  0
150147, 148, 129, 149keephyp 3632 . . . . . . 7  |-  0  <_  if ( ( sqr `  ( P ^ ( P  pCnt  A ) ) )  e.  NN , 
1 ,  0 )
151150a1i 10 . . . . . 6  |-  ( ph  ->  0  <_  if (
( sqr `  ( P ^ ( P  pCnt  A ) ) )  e.  NN ,  1 ,  0 ) )
152144, 146, 134, 151, 57letrd 8989 . . . . 5  |-  ( ph  ->  0  <_  ( F `  ( P ^ ( P  pCnt  A ) ) ) )
153104, 143keepel 3635 . . . . . . 7  |-  if ( ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN ,  1 ,  0 )  e.  RR
154153a1i 10 . . . . . 6  |-  ( ph  ->  if ( ( sqr `  ( A  /  ( P ^ ( P  pCnt  A ) ) ) )  e.  NN ,  1 ,  0 )  e.  RR )
155 breq2 4043 . . . . . . . 8  |-  ( 1  =  if ( ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN ,  1 ,  0 )  -> 
( 0  <_  1  <->  0  <_  if ( ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN ,  1 ,  0 ) ) )
156 breq2 4043 . . . . . . . 8  |-  ( 0  =  if ( ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN ,  1 ,  0 )  -> 
( 0  <_  0  <->  0  <_  if ( ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN ,  1 ,  0 ) ) )
157155, 156, 129, 149keephyp 3632 . . . . . . 7  |-  0  <_  if ( ( sqr `  ( A  /  ( P ^ ( P  pCnt  A ) ) ) )  e.  NN ,  1 ,  0 )
158157a1i 10 . . . . . 6  |-  ( ph  ->  0  <_  if (
( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN ,  1 ,  0 ) )
159144, 154, 137, 158, 126letrd 8989 . . . . 5  |-  ( ph  ->  0  <_  ( F `  ( A  /  ( P ^ ( P  pCnt  A ) ) ) ) )
160134, 137, 152, 159mulge0d 9365 . . . 4  |-  ( ph  ->  0  <_  ( ( F `  ( P ^ ( P  pCnt  A ) ) )  x.  ( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) ) )
161160adantr 451 . . 3  |-  ( (
ph  /\  -.  ( sqr `  A )  e.  NN )  ->  0  <_  ( ( F `  ( P ^ ( P 
pCnt  A ) ) )  x.  ( F `  ( A  /  ( P ^ ( P  pCnt  A ) ) ) ) ) )
1621, 2, 142, 161ifbothda 3608 . 2  |-  ( ph  ->  if ( ( sqr `  A )  e.  NN ,  1 ,  0 )  <_  ( ( F `  ( P ^ ( P  pCnt  A ) ) )  x.  ( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) ) )
16363nncnd 9778 . . . . 5  |-  ( ph  ->  ( P ^ ( P  pCnt  A ) )  e.  CC )
16463nnne0d 9806 . . . . 5  |-  ( ph  ->  ( P ^ ( P  pCnt  A ) )  =/=  0 )
16518, 163, 164divcan2d 9554 . . . 4  |-  ( ph  ->  ( ( P ^
( P  pCnt  A
) )  x.  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  =  A )
166165fveq2d 5545 . . 3  |-  ( ph  ->  ( F `  (
( P ^ ( P  pCnt  A ) )  x.  ( A  / 
( P ^ ( P  pCnt  A ) ) ) ) )  =  ( F `  A
) )
167 pcndvds2 12936 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  -.  P  ||  ( A  / 
( P ^ ( P  pCnt  A ) ) ) )
1684, 17, 167syl2anc 642 . . . . . 6  |-  ( ph  ->  -.  P  ||  ( A  /  ( P ^
( P  pCnt  A
) ) ) )
169 coprm 12795 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( A  /  ( P ^
( P  pCnt  A
) ) )  e.  ZZ )  ->  ( -.  P  ||  ( A  /  ( P ^
( P  pCnt  A
) ) )  <->  ( P  gcd  ( A  /  ( P ^ ( P  pCnt  A ) ) ) )  =  1 ) )
1704, 67, 169syl2anc 642 . . . . . 6  |-  ( ph  ->  ( -.  P  ||  ( A  /  ( P ^ ( P  pCnt  A ) ) )  <->  ( P  gcd  ( A  /  ( P ^ ( P  pCnt  A ) ) ) )  =  1 ) )
171168, 170mpbid 201 . . . . 5  |-  ( ph  ->  ( P  gcd  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  =  1 )
172 prmz 12778 . . . . . . 7  |-  ( P  e.  Prime  ->  P  e.  ZZ )
1734, 172syl 15 . . . . . 6  |-  ( ph  ->  P  e.  ZZ )
174 rpexp1i 12816 . . . . . 6  |-  ( ( P  e.  ZZ  /\  ( A  /  ( P ^ ( P  pCnt  A ) ) )  e.  ZZ  /\  ( P 
pCnt  A )  e.  NN0 )  ->  ( ( P  gcd  ( A  / 
( P ^ ( P  pCnt  A ) ) ) )  =  1  ->  ( ( P ^ ( P  pCnt  A ) )  gcd  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  =  1 ) )
175173, 67, 56, 174syl3anc 1182 . . . . 5  |-  ( ph  ->  ( ( P  gcd  ( A  /  ( P ^ ( P  pCnt  A ) ) ) )  =  1  ->  (
( P ^ ( P  pCnt  A ) )  gcd  ( A  / 
( P ^ ( P  pCnt  A ) ) ) )  =  1 ) )
176171, 175mpd 14 . . . 4  |-  ( ph  ->  ( ( P ^
( P  pCnt  A
) )  gcd  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  =  1 )
17747, 48, 49, 50, 51, 52, 53, 54, 63, 66, 176dchrisum0fmul 20671 . . 3  |-  ( ph  ->  ( F `  (
( P ^ ( P  pCnt  A ) )  x.  ( A  / 
( P ^ ( P  pCnt  A ) ) ) ) )  =  ( ( F `  ( P ^ ( P 
pCnt  A ) ) )  x.  ( F `  ( A  /  ( P ^ ( P  pCnt  A ) ) ) ) ) )
178166, 177eqtr3d 2330 . 2  |-  ( ph  ->  ( F `  A
)  =  ( ( F `  ( P ^ ( P  pCnt  A ) ) )  x.  ( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) ) )
179162, 178breqtrrd 4065 1  |-  ( ph  ->  if ( ( sqr `  A )  e.  NN ,  1 ,  0 )  <_  ( F `  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   {crab 2560   ifcif 3578   class class class wbr 4039    e. cmpt 4093   -->wf 5267   ` cfv 5271  (class class class)co 5874   CCcc 8751   RRcr 8752   0cc0 8753   1c1 8754    x. cmul 8758    < clt 8883    <_ cle 8884    / cdiv 9439   NNcn 9762   2c2 9811   NN0cn0 9981   ZZcz 10040   ZZ>=cuz 10246   QQcq 10332   RR+crp 10370  ..^cfzo 10886   ^cexp 11120   sqrcsqr 11734   sum_csu 12174    || cdivides 12547    gcd cgcd 12701   Primecprime 12774    pCnt cpc 12905   Basecbs 13164   0gc0g 13416   ZRHomczrh 16467  ℤ/nczn 16470  DChrcdchr 20487
This theorem is referenced by:  dchrisum0flb  20675
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832  ax-mulf 8833
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-disj 4010  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-tpos 6250  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-omul 6500  df-er 6676  df-ec 6678  df-qs 6682  df-map 6790  df-pm 6791  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-sup 7210  df-oi 7241  df-card 7588  df-acn 7591  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-ioo 10676  df-ioc 10677  df-ico 10678  df-icc 10679  df-fz 10799  df-fzo 10887  df-fl 10941  df-mod 10990  df-seq 11063  df-exp 11121  df-fac 11305  df-bc 11332  df-hash 11354  df-shft 11578  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-limsup 11961  df-clim 11978  df-rlim 11979  df-sum 12175  df-ef 12365  df-sin 12367  df-cos 12368  df-pi 12370  df-dvds 12548  df-gcd 12702  df-prm 12775  df-numer 12822  df-denom 12823  df-pc 12906  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-starv 13239  df-sca 13240  df-vsca 13241  df-tset 13243  df-ple 13244  df-ds 13246  df-hom 13248  df-cco 13249  df-rest 13343  df-topn 13344  df-topgen 13360  df-pt 13361  df-prds 13364  df-xrs 13419  df-0g 13420  df-gsum 13421  df-qtop 13426  df-imas 13427  df-divs 13428  df-xps 13429  df-mre 13504  df-mrc 13505  df-acs 13507  df-mnd 14383  df-mhm 14431  df-submnd 14432  df-grp 14505  df-minusg 14506  df-sbg 14507  df-mulg 14508  df-subg 14634  df-nsg 14635  df-eqg 14636  df-ghm 14697  df-cntz 14809  df-od 14860  df-cmn 15107  df-abl 15108  df-mgp 15342  df-rng 15356  df-cring 15357  df-ur 15358  df-oppr 15421  df-dvdsr 15439  df-unit 15440  df-invr 15470  df-dvr 15481  df-rnghom 15512  df-drng 15530  df-subrg 15559  df-lmod 15645  df-lss 15706  df-lsp 15745  df-sra 15941  df-rgmod 15942  df-lidl 15943  df-rsp 15944  df-2idl 16000  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-cnfld 16394  df-zrh 16471  df-zn 16474  df-top 16652  df-bases 16654  df-topon 16655  df-topsp 16656  df-cld 16772  df-ntr 16773  df-cls 16774  df-nei 16851  df-lp 16884  df-perf 16885  df-cn 16973  df-cnp 16974  df-haus 17059  df-tx 17273  df-hmeo 17462  df-fbas 17536  df-fg 17537  df-fil 17557  df-fm 17649  df-flim 17650  df-flf 17651  df-xms 17901  df-ms 17902  df-tms 17903  df-cncf 18398  df-limc 19232  df-dv 19233  df-log 19930  df-cxp 19931  df-dchr 20488
  Copyright terms: Public domain W3C validator