MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0fmul Unicode version

Theorem dchrisum0fmul 20582
Description: The function  F, the divisor sum of a Dirichlet character, is a multiplicative function (but not completely multiplicative). Equation 9.4.27 of [Shapiro], p. 382. (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum2.g  |-  G  =  (DChr `  N )
rpvmasum2.d  |-  D  =  ( Base `  G
)
rpvmasum2.1  |-  .1.  =  ( 0g `  G )
dchrisum0f.f  |-  F  =  ( b  e.  NN  |->  sum_ v  e.  { q  e.  NN  |  q 
||  b }  ( X `  ( L `  v ) ) )
dchrisum0f.x  |-  ( ph  ->  X  e.  D )
dchrisum0fmul.a  |-  ( ph  ->  A  e.  NN )
dchrisum0fmul.b  |-  ( ph  ->  B  e.  NN )
dchrisum0fmul.m  |-  ( ph  ->  ( A  gcd  B
)  =  1 )
Assertion
Ref Expression
dchrisum0fmul  |-  ( ph  ->  ( F `  ( A  x.  B )
)  =  ( ( F `  A )  x.  ( F `  B ) ) )
Distinct variable groups:    q, b,
v, A    N, q    B, b, q, v    L, b, v    X, b, v
Allowed substitution hints:    ph( v, q, b)    D( v, q, b)    .1. ( v, q, b)    F( v, q, b)    G( v, q, b)    L( q)    N( v, b)    X( q)    Z( v, q, b)

Proof of Theorem dchrisum0fmul
StepHypRef Expression
1 dchrisum0fmul.a . . 3  |-  ( ph  ->  A  e.  NN )
2 dchrisum0fmul.b . . 3  |-  ( ph  ->  B  e.  NN )
3 dchrisum0fmul.m . . 3  |-  ( ph  ->  ( A  gcd  B
)  =  1 )
4 eqid 2256 . . 3  |-  { q  e.  NN  |  q 
||  A }  =  { q  e.  NN  |  q  ||  A }
5 eqid 2256 . . 3  |-  { q  e.  NN  |  q 
||  B }  =  { q  e.  NN  |  q  ||  B }
6 eqid 2256 . . 3  |-  { q  e.  NN  |  q 
||  ( A  x.  B ) }  =  { q  e.  NN  |  q  ||  ( A  x.  B ) }
7 rpvmasum2.g . . . 4  |-  G  =  (DChr `  N )
8 rpvmasum.z . . . 4  |-  Z  =  (ℤ/n `  N )
9 rpvmasum2.d . . . 4  |-  D  =  ( Base `  G
)
10 rpvmasum.l . . . 4  |-  L  =  ( ZRHom `  Z
)
11 dchrisum0f.x . . . . 5  |-  ( ph  ->  X  e.  D )
1211adantr 453 . . . 4  |-  ( (
ph  /\  j  e.  { q  e.  NN  | 
q  ||  A }
)  ->  X  e.  D )
13 ssrab2 3200 . . . . . . 7  |-  { q  e.  NN  |  q 
||  A }  C_  NN
1413sseli 3118 . . . . . 6  |-  ( j  e.  { q  e.  NN  |  q  ||  A }  ->  j  e.  NN )
1514nnzd 10048 . . . . 5  |-  ( j  e.  { q  e.  NN  |  q  ||  A }  ->  j  e.  ZZ )
1615adantl 454 . . . 4  |-  ( (
ph  /\  j  e.  { q  e.  NN  | 
q  ||  A }
)  ->  j  e.  ZZ )
177, 8, 9, 10, 12, 16dchrzrhcl 20411 . . 3  |-  ( (
ph  /\  j  e.  { q  e.  NN  | 
q  ||  A }
)  ->  ( X `  ( L `  j
) )  e.  CC )
1811adantr 453 . . . 4  |-  ( (
ph  /\  k  e.  { q  e.  NN  | 
q  ||  B }
)  ->  X  e.  D )
19 ssrab2 3200 . . . . . . 7  |-  { q  e.  NN  |  q 
||  B }  C_  NN
2019sseli 3118 . . . . . 6  |-  ( k  e.  { q  e.  NN  |  q  ||  B }  ->  k  e.  NN )
2120nnzd 10048 . . . . 5  |-  ( k  e.  { q  e.  NN  |  q  ||  B }  ->  k  e.  ZZ )
2221adantl 454 . . . 4  |-  ( (
ph  /\  k  e.  { q  e.  NN  | 
q  ||  B }
)  ->  k  e.  ZZ )
237, 8, 9, 10, 18, 22dchrzrhcl 20411 . . 3  |-  ( (
ph  /\  k  e.  { q  e.  NN  | 
q  ||  B }
)  ->  ( X `  ( L `  k
) )  e.  CC )
2415, 21anim12i 551 . . . 4  |-  ( ( j  e.  { q  e.  NN  |  q 
||  A }  /\  k  e.  { q  e.  NN  |  q  ||  B } )  ->  (
j  e.  ZZ  /\  k  e.  ZZ )
)
2511adantr 453 . . . . . 6  |-  ( (
ph  /\  ( j  e.  ZZ  /\  k  e.  ZZ ) )  ->  X  e.  D )
26 simprl 735 . . . . . 6  |-  ( (
ph  /\  ( j  e.  ZZ  /\  k  e.  ZZ ) )  -> 
j  e.  ZZ )
27 simprr 736 . . . . . 6  |-  ( (
ph  /\  ( j  e.  ZZ  /\  k  e.  ZZ ) )  -> 
k  e.  ZZ )
287, 8, 9, 10, 25, 26, 27dchrzrhmul 20412 . . . . 5  |-  ( (
ph  /\  ( j  e.  ZZ  /\  k  e.  ZZ ) )  -> 
( X `  ( L `  ( j  x.  k ) ) )  =  ( ( X `
 ( L `  j ) )  x.  ( X `  ( L `  k )
) ) )
2928eqcomd 2261 . . . 4  |-  ( (
ph  /\  ( j  e.  ZZ  /\  k  e.  ZZ ) )  -> 
( ( X `  ( L `  j ) )  x.  ( X `
 ( L `  k ) ) )  =  ( X `  ( L `  ( j  x.  k ) ) ) )
3024, 29sylan2 462 . . 3  |-  ( (
ph  /\  ( j  e.  { q  e.  NN  |  q  ||  A }  /\  k  e.  { q  e.  NN  |  q 
||  B } ) )  ->  ( ( X `  ( L `  j ) )  x.  ( X `  ( L `  k )
) )  =  ( X `  ( L `
 ( j  x.  k ) ) ) )
31 fveq2 5423 . . . 4  |-  ( i  =  ( j  x.  k )  ->  ( L `  i )  =  ( L `  ( j  x.  k
) ) )
3231fveq2d 5427 . . 3  |-  ( i  =  ( j  x.  k )  ->  ( X `  ( L `  i ) )  =  ( X `  ( L `  ( j  x.  k ) ) ) )
331, 2, 3, 4, 5, 6, 17, 23, 30, 32fsumdvdsmul 20362 . 2  |-  ( ph  ->  ( sum_ j  e.  {
q  e.  NN  | 
q  ||  A } 
( X `  ( L `  j )
)  x.  sum_ k  e.  { q  e.  NN  |  q  ||  B } 
( X `  ( L `  k )
) )  =  sum_ i  e.  { q  e.  NN  |  q  ||  ( A  x.  B
) }  ( X `
 ( L `  i ) ) )
34 rpvmasum.a . . . . 5  |-  ( ph  ->  N  e.  NN )
35 rpvmasum2.1 . . . . 5  |-  .1.  =  ( 0g `  G )
36 dchrisum0f.f . . . . 5  |-  F  =  ( b  e.  NN  |->  sum_ v  e.  { q  e.  NN  |  q 
||  b }  ( X `  ( L `  v ) ) )
378, 10, 34, 7, 9, 35, 36dchrisum0fval 20581 . . . 4  |-  ( A  e.  NN  ->  ( F `  A )  =  sum_ j  e.  {
q  e.  NN  | 
q  ||  A } 
( X `  ( L `  j )
) )
381, 37syl 17 . . 3  |-  ( ph  ->  ( F `  A
)  =  sum_ j  e.  { q  e.  NN  |  q  ||  A } 
( X `  ( L `  j )
) )
398, 10, 34, 7, 9, 35, 36dchrisum0fval 20581 . . . 4  |-  ( B  e.  NN  ->  ( F `  B )  =  sum_ k  e.  {
q  e.  NN  | 
q  ||  B } 
( X `  ( L `  k )
) )
402, 39syl 17 . . 3  |-  ( ph  ->  ( F `  B
)  =  sum_ k  e.  { q  e.  NN  |  q  ||  B } 
( X `  ( L `  k )
) )
4138, 40oveq12d 5775 . 2  |-  ( ph  ->  ( ( F `  A )  x.  ( F `  B )
)  =  ( sum_ j  e.  { q  e.  NN  |  q  ||  A }  ( X `  ( L `  j
) )  x.  sum_ k  e.  { q  e.  NN  |  q  ||  B }  ( X `  ( L `  k
) ) ) )
421, 2nnmulcld 9726 . . 3  |-  ( ph  ->  ( A  x.  B
)  e.  NN )
438, 10, 34, 7, 9, 35, 36dchrisum0fval 20581 . . 3  |-  ( ( A  x.  B )  e.  NN  ->  ( F `  ( A  x.  B ) )  = 
sum_ i  e.  {
q  e.  NN  | 
q  ||  ( A  x.  B ) }  ( X `  ( L `  i ) ) )
4442, 43syl 17 . 2  |-  ( ph  ->  ( F `  ( A  x.  B )
)  =  sum_ i  e.  { q  e.  NN  |  q  ||  ( A  x.  B ) }  ( X `  ( L `  i )
) )
4533, 41, 443eqtr4rd 2299 1  |-  ( ph  ->  ( F `  ( A  x.  B )
)  =  ( ( F `  A )  x.  ( F `  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621   {crab 2519   class class class wbr 3963    e. cmpt 4017   ` cfv 4638  (class class class)co 5757   1c1 8671    x. cmul 8675   NNcn 9679   ZZcz 9956   sum_csu 12088    || cdivides 12458    gcd cgcd 12612   Basecbs 13075   0gc0g 13327   ZRHomczrh 16378  ℤ/nczn 16381  DChrcdchr 20398
This theorem is referenced by:  dchrisum0flblem2  20585
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-inf2 7275  ax-cnex 8726  ax-resscn 8727  ax-1cn 8728  ax-icn 8729  ax-addcl 8730  ax-addrcl 8731  ax-mulcl 8732  ax-mulrcl 8733  ax-mulcom 8734  ax-addass 8735  ax-mulass 8736  ax-distr 8737  ax-i2m1 8738  ax-1ne0 8739  ax-1rid 8740  ax-rnegex 8741  ax-rrecex 8742  ax-cnre 8743  ax-pre-lttri 8744  ax-pre-lttrn 8745  ax-pre-ltadd 8746  ax-pre-mulgt0 8747  ax-pre-sup 8748  ax-addf 8749  ax-mulf 8750
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-int 3804  df-iun 3848  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-se 4290  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-isom 4655  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-1st 6021  df-2nd 6022  df-tpos 6133  df-iota 6190  df-riota 6237  df-recs 6321  df-rdg 6356  df-1o 6412  df-oadd 6416  df-er 6593  df-ec 6595  df-qs 6599  df-map 6707  df-en 6797  df-dom 6798  df-sdom 6799  df-fin 6800  df-sup 7127  df-oi 7158  df-card 7505  df-pnf 8802  df-mnf 8803  df-xr 8804  df-ltxr 8805  df-le 8806  df-sub 8972  df-neg 8973  df-div 9357  df-n 9680  df-2 9737  df-3 9738  df-4 9739  df-5 9740  df-6 9741  df-7 9742  df-8 9743  df-9 9744  df-10 9745  df-n0 9898  df-z 9957  df-dec 10057  df-uz 10163  df-rp 10287  df-fz 10714  df-fzo 10802  df-fl 10856  df-mod 10905  df-seq 10978  df-exp 11036  df-hash 11269  df-cj 11514  df-re 11515  df-im 11516  df-sqr 11650  df-abs 11651  df-clim 11892  df-sum 12089  df-divides 12459  df-gcd 12613  df-struct 13077  df-ndx 13078  df-slot 13079  df-base 13080  df-sets 13081  df-ress 13082  df-plusg 13148  df-mulr 13149  df-starv 13150  df-sca 13151  df-vsca 13152  df-tset 13154  df-ple 13155  df-ds 13157  df-0g 13331  df-imas 13338  df-divs 13339  df-mnd 14294  df-mhm 14342  df-grp 14416  df-minusg 14417  df-sbg 14418  df-mulg 14419  df-subg 14545  df-nsg 14546  df-eqg 14547  df-ghm 14608  df-cmn 15018  df-abl 15019  df-mgp 15253  df-ring 15267  df-cring 15268  df-ur 15269  df-oppr 15332  df-dvdsr 15350  df-unit 15351  df-rnghom 15423  df-subrg 15470  df-lmod 15556  df-lss 15617  df-lsp 15656  df-sra 15852  df-rgmod 15853  df-lidl 15854  df-rsp 15855  df-2idl 15911  df-cnfld 16305  df-zrh 16382  df-zn 16385  df-dchr 20399
  Copyright terms: Public domain W3C validator