MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0fno1 Unicode version

Theorem dchrisum0fno1 20654
Description: The sum  sum_ k  <_  x ,  F ( x )  /  sqr k is divergent (i.e. not eventually bounded). Equation 9.4.30 of [Shapiro], p. 383. (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum2.g  |-  G  =  (DChr `  N )
rpvmasum2.d  |-  D  =  ( Base `  G
)
rpvmasum2.1  |-  .1.  =  ( 0g `  G )
dchrisum0f.f  |-  F  =  ( b  e.  NN  |->  sum_ v  e.  { q  e.  NN  |  q 
||  b }  ( X `  ( L `  v ) ) )
dchrisum0f.x  |-  ( ph  ->  X  e.  D )
dchrisum0flb.r  |-  ( ph  ->  X : ( Base `  Z ) --> RR )
dchrisum0fno1.a  |-  ( ph  ->  ( x  e.  RR+  |->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( F `  k
)  /  ( sqr `  k ) ) )  e.  O ( 1 ) )
Assertion
Ref Expression
dchrisum0fno1  |-  -.  ph
Distinct variable groups:    x, k,  .1.    k, F, x    k,
b, q, v, x   
k, N, q, x    ph, k, x    k, Z, x    D, k, x    L, b, k, v, x    X, b, k, v, x
Dummy variables  m  i are mutually distinct and distinct from all other variables.
Allowed substitution hints:    ph( v, q, b)    D( v, q, b)    .1. ( v, q, b)    F( v, q, b)    G( x, v, k, q, b)    L( q)    N( v, b)    X( q)    Z( v, q, b)

Proof of Theorem dchrisum0fno1
StepHypRef Expression
1 logno1 19977 . 2  |-  -.  (
x  e.  RR+  |->  ( log `  x ) )  e.  O ( 1 )
2 relogcl 19926 . . . . . . 7  |-  ( x  e.  RR+  ->  ( log `  x )  e.  RR )
32adantl 454 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( log `  x )  e.  RR )
43recnd 8856 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( log `  x )  e.  CC )
5 2cn 9811 . . . . . 6  |-  2  e.  CC
65a1i 12 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  2  e.  CC )
7 2ne0 9824 . . . . . 6  |-  2  =/=  0
87a1i 12 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  2  =/=  0 )
94, 6, 8divcan2d 9533 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 2  x.  ( ( log `  x )  /  2
) )  =  ( log `  x ) )
109mpteq2dva 4107 . . 3  |-  ( ph  ->  ( x  e.  RR+  |->  ( 2  x.  (
( log `  x
)  /  2 ) ) )  =  ( x  e.  RR+  |->  ( log `  x ) ) )
113rehalfcld 9953 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( log `  x )  / 
2 )  e.  RR )
1211recnd 8856 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( log `  x )  / 
2 )  e.  CC )
13 rpssre 10359 . . . . . 6  |-  RR+  C_  RR
14 o1const 12087 . . . . . 6  |-  ( (
RR+  C_  RR  /\  2  e.  CC )  ->  (
x  e.  RR+  |->  2 )  e.  O ( 1 ) )
1513, 5, 14mp2an 655 . . . . 5  |-  ( x  e.  RR+  |->  2 )  e.  O ( 1 )
1615a1i 12 . . . 4  |-  ( ph  ->  ( x  e.  RR+  |->  2 )  e.  O
( 1 ) )
17 1re 8832 . . . . . 6  |-  1  e.  RR
1817a1i 12 . . . . 5  |-  ( ph  ->  1  e.  RR )
19 dchrisum0fno1.a . . . . 5  |-  ( ph  ->  ( x  e.  RR+  |->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( F `  k
)  /  ( sqr `  k ) ) )  e.  O ( 1 ) )
20 sumex 12154 . . . . . 6  |-  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( F `  k )  /  ( sqr `  k ) )  e.  _V
2120a1i 12 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( F `  k )  /  ( sqr `  k ) )  e.  _V )
2211adantrr 699 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( log `  x
)  /  2 )  e.  RR )
232ad2antrl 710 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( log `  x
)  e.  RR )
24 log1 19933 . . . . . . . . 9  |-  ( log `  1 )  =  0
25 simprr 735 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
1  <_  x )
26 1rp 10353 . . . . . . . . . . 11  |-  1  e.  RR+
27 simprl 734 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  x  e.  RR+ )
28 logleb 19951 . . . . . . . . . . 11  |-  ( ( 1  e.  RR+  /\  x  e.  RR+ )  ->  (
1  <_  x  <->  ( log `  1 )  <_  ( log `  x ) ) )
2926, 27, 28sylancr 646 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( 1  <_  x  <->  ( log `  1 )  <_  ( log `  x
) ) )
3025, 29mpbid 203 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( log `  1
)  <_  ( log `  x ) )
3124, 30syl5eqbrr 4058 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
0  <_  ( log `  x ) )
32 2re 9810 . . . . . . . . 9  |-  2  e.  RR
3332a1i 12 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
2  e.  RR )
34 2pos 9823 . . . . . . . . 9  |-  0  <  2
3534a1i 12 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
0  <  2 )
36 divge0 9620 . . . . . . . 8  |-  ( ( ( ( log `  x
)  e.  RR  /\  0  <_  ( log `  x
) )  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  0  <_  (
( log `  x
)  /  2 ) )
3723, 31, 33, 35, 36syl22anc 1185 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
0  <_  ( ( log `  x )  / 
2 ) )
3822, 37absidd 11899 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  (
( log `  x
)  /  2 ) )  =  ( ( log `  x )  /  2 ) )
39 fzfid 11029 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( 1 ... ( |_ `  x ) )  e.  Fin )
40 rpvmasum.z . . . . . . . . . . . 12  |-  Z  =  (ℤ/n `  N )
41 rpvmasum.l . . . . . . . . . . . 12  |-  L  =  ( ZRHom `  Z
)
42 rpvmasum.a . . . . . . . . . . . 12  |-  ( ph  ->  N  e.  NN )
43 rpvmasum2.g . . . . . . . . . . . 12  |-  G  =  (DChr `  N )
44 rpvmasum2.d . . . . . . . . . . . 12  |-  D  =  ( Base `  G
)
45 rpvmasum2.1 . . . . . . . . . . . 12  |-  .1.  =  ( 0g `  G )
46 dchrisum0f.f . . . . . . . . . . . 12  |-  F  =  ( b  e.  NN  |->  sum_ v  e.  { q  e.  NN  |  q 
||  b }  ( X `  ( L `  v ) ) )
47 dchrisum0f.x . . . . . . . . . . . 12  |-  ( ph  ->  X  e.  D )
48 dchrisum0flb.r . . . . . . . . . . . 12  |-  ( ph  ->  X : ( Base `  Z ) --> RR )
4940, 41, 42, 43, 44, 45, 46, 47, 48dchrisum0ff 20650 . . . . . . . . . . 11  |-  ( ph  ->  F : NN --> RR )
5049adantr 453 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  F : NN --> RR )
51 elfznn 10813 . . . . . . . . . 10  |-  ( k  e.  ( 1 ... ( |_ `  x
) )  ->  k  e.  NN )
52 ffvelrn 5624 . . . . . . . . . 10  |-  ( ( F : NN --> RR  /\  k  e.  NN )  ->  ( F `  k
)  e.  RR )
5350, 51, 52syl2an 465 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( F `  k )  e.  RR )
5451adantl 454 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  k  e.  NN )
5554nnrpd 10384 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  k  e.  RR+ )
5655rpsqrcld 11888 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  k
)  e.  RR+ )
5753, 56rerpdivcld 10412 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( F `
 k )  / 
( sqr `  k
) )  e.  RR )
5839, 57fsumrecl 12201 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( F `  k
)  /  ( sqr `  k ) )  e.  RR )
5958recnd 8856 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( F `  k
)  /  ( sqr `  k ) )  e.  CC )
6059abscld 11912 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( F `  k
)  /  ( sqr `  k ) ) )  e.  RR )
61 fzfid 11029 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( 1 ... ( |_ `  ( sqr `  x
) ) )  e. 
Fin )
62 elfznn 10813 . . . . . . . . . . 11  |-  ( i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  ->  i  e.  NN )
6362adantl 454 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
i  e.  NN )
6463nnrecred 9786 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( 1  /  i
)  e.  RR )
6561, 64fsumrecl 12201 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) ( 1  /  i )  e.  RR )
66 logsqr 20045 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( log `  ( sqr `  x
) )  =  ( ( log `  x
)  /  2 ) )
6766ad2antrl 710 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( log `  ( sqr `  x ) )  =  ( ( log `  x )  /  2
) )
68 rpsqrcl 11744 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( sqr `  x )  e.  RR+ )
6968ad2antrl 710 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( sqr `  x
)  e.  RR+ )
70 harmoniclbnd 20296 . . . . . . . . . 10  |-  ( ( sqr `  x )  e.  RR+  ->  ( log `  ( sqr `  x
) )  <_  sum_ i  e.  ( 1 ... ( |_ `  ( sqr `  x
) ) ) ( 1  /  i ) )
7169, 70syl 17 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( log `  ( sqr `  x ) )  <_  sum_ i  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) ) ( 1  /  i ) )
7267, 71eqbrtrrd 4046 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( log `  x
)  /  2 )  <_  sum_ i  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) ) ( 1  /  i ) )
73 eqid 2284 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^
2 ) )  =  ( m  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) )  |->  ( m ^ 2 ) )
74 ovex 5844 . . . . . . . . . . . . . . . . 17  |-  ( m ^ 2 )  e. 
_V
7573, 74elrnmpti 4929 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ran  (  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^
2 ) )  <->  E. m  e.  ( 1 ... ( |_ `  ( sqr `  x
) ) ) k  =  ( m ^
2 ) )
76 elfznn 10813 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  ->  m  e.  NN )
7776adantl 454 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  ->  m  e.  NN )
7877nnrpd 10384 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  ->  m  e.  RR+ )
7978rprege0d 10392 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( m  e.  RR  /\  0  <_  m )
)
80 sqrsq 11749 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( m  e.  RR  /\  0  <_  m )  -> 
( sqr `  (
m ^ 2 ) )  =  m )
8179, 80syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( sqr `  (
m ^ 2 ) )  =  m )
8281, 77eqeltrd 2358 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( sqr `  (
m ^ 2 ) )  e.  NN )
83 fveq2 5485 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  ( m ^
2 )  ->  ( sqr `  k )  =  ( sqr `  (
m ^ 2 ) ) )
8483eleq1d 2350 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  ( m ^
2 )  ->  (
( sqr `  k
)  e.  NN  <->  ( sqr `  ( m ^ 2 ) )  e.  NN ) )
8582, 84syl5ibrcom 215 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( k  =  ( m ^ 2 )  ->  ( sqr `  k
)  e.  NN ) )
8685rexlimdva 2668 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( E. m  e.  ( 1 ... ( |_ `  ( sqr `  x
) ) ) k  =  ( m ^
2 )  ->  ( sqr `  k )  e.  NN ) )
8775, 86syl5bi 210 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( k  e.  ran  (  m  e.  (
1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^ 2 ) )  ->  ( sqr `  k
)  e.  NN ) )
8887imp 420 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ran  (  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^
2 ) ) )  ->  ( sqr `  k
)  e.  NN )
89 iftrue 3572 . . . . . . . . . . . . . 14  |-  ( ( sqr `  k )  e.  NN  ->  if ( ( sqr `  k
)  e.  NN , 
1 ,  0 )  =  1 )
9088, 89syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ran  (  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^
2 ) ) )  ->  if ( ( sqr `  k )  e.  NN ,  1 ,  0 )  =  1 )
9190oveq1d 5834 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ran  (  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^
2 ) ) )  ->  ( if ( ( sqr `  k
)  e.  NN , 
1 ,  0 )  /  ( sqr `  k
) )  =  ( 1  /  ( sqr `  k ) ) )
9291sumeq2dv 12170 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ k  e.  ran  (  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^ 2 ) ) ( if ( ( sqr `  k )  e.  NN ,  1 ,  0 )  / 
( sqr `  k
) )  =  sum_ k  e.  ran  (  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^
2 ) ) ( 1  /  ( sqr `  k ) ) )
93 fveq2 5485 . . . . . . . . . . . . 13  |-  ( k  =  ( i ^
2 )  ->  ( sqr `  k )  =  ( sqr `  (
i ^ 2 ) ) )
9493oveq2d 5835 . . . . . . . . . . . 12  |-  ( k  =  ( i ^
2 )  ->  (
1  /  ( sqr `  k ) )  =  ( 1  /  ( sqr `  ( i ^
2 ) ) ) )
9577nnsqcld 11259 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( m ^ 2 )  e.  NN )
9669rpred 10385 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( sqr `  x
)  e.  RR )
97 fznnfl 10960 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( sqr `  x )  e.  RR  ->  (
m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  <->  ( m  e.  NN  /\  m  <_ 
( sqr `  x
) ) ) )
9896, 97syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( m  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) )  <->  ( m  e.  NN  /\  m  <_ 
( sqr `  x
) ) ) )
9998simplbda 609 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  ->  m  <_  ( sqr `  x
) )
10069adantr 453 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( sqr `  x
)  e.  RR+ )
101100rprege0d 10392 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( ( sqr `  x
)  e.  RR  /\  0  <_  ( sqr `  x
) ) )
102 le2sq 11172 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( m  e.  RR  /\  0  <_  m )  /\  ( ( sqr `  x
)  e.  RR  /\  0  <_  ( sqr `  x
) ) )  -> 
( m  <_  ( sqr `  x )  <->  ( m ^ 2 )  <_ 
( ( sqr `  x
) ^ 2 ) ) )
10379, 101, 102syl2anc 644 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( m  <_  ( sqr `  x )  <->  ( m ^ 2 )  <_ 
( ( sqr `  x
) ^ 2 ) ) )
10499, 103mpbid 203 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( m ^ 2 )  <_  ( ( sqr `  x ) ^
2 ) )
10527rpred 10385 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  x  e.  RR )
106105adantr 453 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  ->  x  e.  RR )
107106recnd 8856 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  ->  x  e.  CC )
108107sqsqrd 11915 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( ( sqr `  x
) ^ 2 )  =  x )
109104, 108breqtrd 4048 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( m ^ 2 )  <_  x )
110 fznnfl 10960 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  RR  ->  (
( m ^ 2 )  e.  ( 1 ... ( |_ `  x ) )  <->  ( (
m ^ 2 )  e.  NN  /\  (
m ^ 2 )  <_  x ) ) )
111106, 110syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( ( m ^
2 )  e.  ( 1 ... ( |_
`  x ) )  <-> 
( ( m ^
2 )  e.  NN  /\  ( m ^ 2 )  <_  x )
) )
11295, 109, 111mpbir2and 890 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( m ^ 2 )  e.  ( 1 ... ( |_ `  x ) ) )
113112ex 425 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( m  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) )  -> 
( m ^ 2 )  e.  ( 1 ... ( |_ `  x ) ) ) )
11476nnrpd 10384 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  ->  m  e.  RR+ )
115114rprege0d 10392 . . . . . . . . . . . . . . . 16  |-  ( m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  ->  ( m  e.  RR  /\  0  <_  m ) )
11662nnrpd 10384 . . . . . . . . . . . . . . . . 17  |-  ( i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  ->  i  e.  RR+ )
117116rprege0d 10392 . . . . . . . . . . . . . . . 16  |-  ( i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  ->  ( i  e.  RR  /\  0  <_ 
i ) )
118 sq11 11170 . . . . . . . . . . . . . . . 16  |-  ( ( ( m  e.  RR  /\  0  <_  m )  /\  ( i  e.  RR  /\  0  <_  i )
)  ->  ( (
m ^ 2 )  =  ( i ^
2 )  <->  m  =  i ) )
119115, 117, 118syl2an 465 . . . . . . . . . . . . . . 15  |-  ( ( m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  /\  i  e.  ( 1 ... ( |_ `  ( sqr `  x
) ) ) )  ->  ( ( m ^ 2 )  =  ( i ^ 2 )  <->  m  =  i
) )
120119a1i 12 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( m  e.  ( 1 ... ( |_ `  ( sqr `  x
) ) )  /\  i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( ( m ^
2 )  =  ( i ^ 2 )  <-> 
m  =  i ) ) )
121113, 120dom2lem 6896 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( m  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) : ( 1 ... ( |_ `  ( sqr `  x ) ) ) -1-1-> ( 1 ... ( |_ `  x ) ) )
122 f1f1orn 5448 . . . . . . . . . . . . 13  |-  ( ( m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^ 2 ) ) : ( 1 ... ( |_ `  ( sqr `  x ) ) ) -1-1-> ( 1 ... ( |_ `  x
) )  ->  (
m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^ 2 ) ) : ( 1 ... ( |_ `  ( sqr `  x ) ) ) -1-1-onto-> ran  (  m  e.  ( 1 ... ( |_ `  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) )
123121, 122syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( m  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) : ( 1 ... ( |_ `  ( sqr `  x ) ) ) -1-1-onto-> ran  (  m  e.  ( 1 ... ( |_ `  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) )
124 oveq1 5826 . . . . . . . . . . . . . 14  |-  ( m  =  i  ->  (
m ^ 2 )  =  ( i ^
2 ) )
125124, 73, 74fvmpt3i 5566 . . . . . . . . . . . . 13  |-  ( i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  ->  ( (
m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^ 2 ) ) `
 i )  =  ( i ^ 2 ) )
126125adantl 454 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( ( m  e.  ( 1 ... ( |_ `  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) `  i )  =  ( i ^
2 ) )
127 f1f 5402 . . . . . . . . . . . . . . . 16  |-  ( ( m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^ 2 ) ) : ( 1 ... ( |_ `  ( sqr `  x ) ) ) -1-1-> ( 1 ... ( |_ `  x
) )  ->  (
m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^ 2 ) ) : ( 1 ... ( |_ `  ( sqr `  x ) ) ) --> ( 1 ... ( |_ `  x
) ) )
128 frn 5360 . . . . . . . . . . . . . . . 16  |-  ( ( m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^ 2 ) ) : ( 1 ... ( |_ `  ( sqr `  x ) ) ) --> ( 1 ... ( |_ `  x
) )  ->  ran  (  m  e.  (
1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^ 2 ) ) 
C_  ( 1 ... ( |_ `  x
) ) )
129121, 127, 1283syl 20 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  ran  (  m  e.  ( 1 ... ( |_ `  ( sqr `  x
) ) )  |->  ( m ^ 2 ) )  C_  ( 1 ... ( |_ `  x ) ) )
130129sselda 3181 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ran  (  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^
2 ) ) )  ->  k  e.  ( 1 ... ( |_
`  x ) ) )
131 0re 8833 . . . . . . . . . . . . . . . . 17  |-  0  e.  RR
13217, 131keepel 3623 . . . . . . . . . . . . . . . 16  |-  if ( ( sqr `  k
)  e.  NN , 
1 ,  0 )  e.  RR
133 rerpdivcl 10376 . . . . . . . . . . . . . . . 16  |-  ( ( if ( ( sqr `  k )  e.  NN ,  1 ,  0 )  e.  RR  /\  ( sqr `  k )  e.  RR+ )  ->  ( if ( ( sqr `  k
)  e.  NN , 
1 ,  0 )  /  ( sqr `  k
) )  e.  RR )
134132, 56, 133sylancr 646 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( if ( ( sqr `  k
)  e.  NN , 
1 ,  0 )  /  ( sqr `  k
) )  e.  RR )
135134recnd 8856 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( if ( ( sqr `  k
)  e.  NN , 
1 ,  0 )  /  ( sqr `  k
) )  e.  CC )
136130, 135syldan 458 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ran  (  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^
2 ) ) )  ->  ( if ( ( sqr `  k
)  e.  NN , 
1 ,  0 )  /  ( sqr `  k
) )  e.  CC )
13791, 136eqeltrrd 2359 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ran  (  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^
2 ) ) )  ->  ( 1  / 
( sqr `  k
) )  e.  CC )
13894, 61, 123, 126, 137fsumf1o 12190 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ k  e.  ran  (  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^ 2 ) ) ( 1  /  ( sqr `  k ) )  =  sum_ i  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) ) ( 1  /  ( sqr `  ( i ^ 2 ) ) ) )
13992, 138eqtrd 2316 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ k  e.  ran  (  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^ 2 ) ) ( if ( ( sqr `  k )  e.  NN ,  1 ,  0 )  / 
( sqr `  k
) )  =  sum_ i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) ( 1  /  ( sqr `  (
i ^ 2 ) ) ) )
140 eldif 3163 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( ( 1 ... ( |_ `  x ) )  \  ran  (  m  e.  ( 1 ... ( |_ `  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) )  <->  ( k  e.  ( 1 ... ( |_ `  x ) )  /\  -.  k  e. 
ran  (  m  e.  ( 1 ... ( |_ `  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) ) )
14151ad2antrl 710 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  k  e.  NN )
142141nncnd 9757 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  k  e.  CC )
143142sqsqrd 11915 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  ( ( sqr `  k ) ^
2 )  =  k )
144 simprr 735 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  ( sqr `  k )  e.  NN )
145 fznnfl 10960 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( x  e.  RR  ->  (
k  e.  ( 1 ... ( |_ `  x ) )  <->  ( k  e.  NN  /\  k  <_  x ) ) )
146105, 145syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( k  e.  ( 1 ... ( |_
`  x ) )  <-> 
( k  e.  NN  /\  k  <_  x )
) )
147146simplbda 609 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  k  <_  x
)
148147adantrr 699 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  k  <_  x )
149141nnrpd 10384 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  k  e.  RR+ )
150149rprege0d 10392 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  ( k  e.  RR  /\  0  <_ 
k ) )
15127adantr 453 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  x  e.  RR+ )
152151rprege0d 10392 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  ( x  e.  RR  /\  0  <_  x ) )
153 sqrle 11740 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( k  e.  RR  /\  0  <_  k )  /\  ( x  e.  RR  /\  0  <_  x )
)  ->  ( k  <_  x  <->  ( sqr `  k
)  <_  ( sqr `  x ) ) )
154150, 152, 153syl2anc 644 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  ( k  <_  x  <->  ( sqr `  k
)  <_  ( sqr `  x ) ) )
155148, 154mpbid 203 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  ( sqr `  k )  <_  ( sqr `  x ) )
15669adantr 453 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  ( sqr `  x )  e.  RR+ )
157156rpred 10385 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  ( sqr `  x )  e.  RR )
158 fznnfl 10960 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( sqr `  x )  e.  RR  ->  (
( sqr `  k
)  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  <->  ( ( sqr `  k )  e.  NN  /\  ( sqr `  k )  <_  ( sqr `  x ) ) ) )
159157, 158syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  ( ( sqr `  k )  e.  ( 1 ... ( |_ `  ( sqr `  x
) ) )  <->  ( ( sqr `  k )  e.  NN  /\  ( sqr `  k )  <_  ( sqr `  x ) ) ) )
160144, 155, 159mpbir2and 890 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  ( sqr `  k )  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) ) )
161143, 141eqeltrd 2358 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  ( ( sqr `  k ) ^
2 )  e.  NN )
162 oveq1 5826 . . . . . . . . . . . . . . . . . . . . 21  |-  ( m  =  ( sqr `  k
)  ->  ( m ^ 2 )  =  ( ( sqr `  k
) ^ 2 ) )
16373, 162elrnmpt1s 4926 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( sqr `  k
)  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  /\  (
( sqr `  k
) ^ 2 )  e.  NN )  -> 
( ( sqr `  k
) ^ 2 )  e.  ran  (  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^
2 ) ) )
164160, 161, 163syl2anc 644 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  ( ( sqr `  k ) ^
2 )  e.  ran  (  m  e.  (
1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^ 2 ) ) )
165143, 164eqeltrrd 2359 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  k  e.  ran  (  m  e.  ( 1 ... ( |_ `  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) )
166165expr 600 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sqr `  k )  e.  NN  ->  k  e.  ran  (  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^ 2 ) ) ) )
167166con3d 127 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( -.  k  e.  ran  (  m  e.  ( 1 ... ( |_ `  ( sqr `  x
) ) )  |->  ( m ^ 2 ) )  ->  -.  ( sqr `  k )  e.  NN ) )
168167impr 604 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  -.  k  e. 
ran  (  m  e.  ( 1 ... ( |_ `  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) ) )  ->  -.  ( sqr `  k
)  e.  NN )
169140, 168sylan2b 463 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( (
1 ... ( |_ `  x ) )  \  ran  (  m  e.  ( 1 ... ( |_ `  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) ) )  ->  -.  ( sqr `  k
)  e.  NN )
170 iffalse 3573 . . . . . . . . . . . . . 14  |-  ( -.  ( sqr `  k
)  e.  NN  ->  if ( ( sqr `  k
)  e.  NN , 
1 ,  0 )  =  0 )
171169, 170syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( (
1 ... ( |_ `  x ) )  \  ran  (  m  e.  ( 1 ... ( |_ `  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) ) )  ->  if ( ( sqr `  k
)  e.  NN , 
1 ,  0 )  =  0 )
172171oveq1d 5834 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( (
1 ... ( |_ `  x ) )  \  ran  (  m  e.  ( 1 ... ( |_ `  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) ) )  -> 
( if ( ( sqr `  k )  e.  NN ,  1 ,  0 )  / 
( sqr `  k
) )  =  ( 0  /  ( sqr `  k ) ) )
173 eldifi 3299 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( ( 1 ... ( |_ `  x ) )  \  ran  (  m  e.  ( 1 ... ( |_ `  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) )  ->  k  e.  ( 1 ... ( |_ `  x ) ) )
174173, 56sylan2 462 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( (
1 ... ( |_ `  x ) )  \  ran  (  m  e.  ( 1 ... ( |_ `  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) ) )  -> 
( sqr `  k
)  e.  RR+ )
175174rpcnne0d 10394 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( (
1 ... ( |_ `  x ) )  \  ran  (  m  e.  ( 1 ... ( |_ `  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) ) )  -> 
( ( sqr `  k
)  e.  CC  /\  ( sqr `  k )  =/=  0 ) )
176 div0 9447 . . . . . . . . . . . . 13  |-  ( ( ( sqr `  k
)  e.  CC  /\  ( sqr `  k )  =/=  0 )  -> 
( 0  /  ( sqr `  k ) )  =  0 )
177175, 176syl 17 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( (
1 ... ( |_ `  x ) )  \  ran  (  m  e.  ( 1 ... ( |_ `  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) ) )  -> 
( 0  /  ( sqr `  k ) )  =  0 )
178172, 177eqtrd 2316 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( (
1 ... ( |_ `  x ) )  \  ran  (  m  e.  ( 1 ... ( |_ `  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) ) )  -> 
( if ( ( sqr `  k )  e.  NN ,  1 ,  0 )  / 
( sqr `  k
) )  =  0 )
179129, 136, 178, 39fsumss 12192 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ k  e.  ran  (  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^ 2 ) ) ( if ( ( sqr `  k )  e.  NN ,  1 ,  0 )  / 
( sqr `  k
) )  =  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( if ( ( sqr `  k )  e.  NN ,  1 ,  0 )  /  ( sqr `  k ) ) )
18063nnrpd 10384 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
i  e.  RR+ )
181180rprege0d 10392 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( i  e.  RR  /\  0  <_  i )
)
182 sqrsq 11749 . . . . . . . . . . . . 13  |-  ( ( i  e.  RR  /\  0  <_  i )  -> 
( sqr `  (
i ^ 2 ) )  =  i )
183181, 182syl 17 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( sqr `  (
i ^ 2 ) )  =  i )
184183oveq2d 5835 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( 1  /  ( sqr `  ( i ^
2 ) ) )  =  ( 1  / 
i ) )
185184sumeq2dv 12170 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) ( 1  /  ( sqr `  (
i ^ 2 ) ) )  =  sum_ i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) ( 1  /  i ) )
186139, 179, 1853eqtr3d 2324 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( if ( ( sqr `  k )  e.  NN ,  1 ,  0 )  /  ( sqr `  k ) )  = 
sum_ i  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) ) ( 1  /  i ) )
187132a1i 12 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  if ( ( sqr `  k )  e.  NN ,  1 ,  0 )  e.  RR )
18842ad2antrr 708 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  N  e.  NN )
18947ad2antrr 708 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  X  e.  D
)
19048ad2antrr 708 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  X : (
Base `  Z ) --> RR )
19140, 41, 188, 43, 44, 45, 46, 189, 190, 54dchrisum0flb 20653 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  if ( ( sqr `  k )  e.  NN ,  1 ,  0 )  <_ 
( F `  k
) )
192187, 53, 56, 191lediv1dd 10439 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( if ( ( sqr `  k
)  e.  NN , 
1 ,  0 )  /  ( sqr `  k
) )  <_  (
( F `  k
)  /  ( sqr `  k ) ) )
19339, 134, 57, 192fsumle 12251 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( if ( ( sqr `  k )  e.  NN ,  1 ,  0 )  /  ( sqr `  k ) )  <_  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( F `  k
)  /  ( sqr `  k ) ) )
194186, 193eqbrtrrd 4046 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) ( 1  /  i )  <_  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( F `  k
)  /  ( sqr `  k ) ) )
19522, 65, 58, 72, 194letrd 8968 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( log `  x
)  /  2 )  <_  sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( F `  k )  /  ( sqr `  k ) ) )
19658leabsd 11891 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( F `  k
)  /  ( sqr `  k ) )  <_ 
( abs `  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( F `  k
)  /  ( sqr `  k ) ) ) )
19722, 58, 60, 195, 196letrd 8968 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( log `  x
)  /  2 )  <_  ( abs `  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( F `  k
)  /  ( sqr `  k ) ) ) )
19838, 197eqbrtrd 4044 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  (
( log `  x
)  /  2 ) )  <_  ( abs ` 
sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( F `  k )  /  ( sqr `  k ) ) ) )
19918, 19, 21, 12, 198o1le 12120 . . . 4  |-  ( ph  ->  ( x  e.  RR+  |->  ( ( log `  x
)  /  2 ) )  e.  O ( 1 ) )
2006, 12, 16, 199o1mul2 12092 . . 3  |-  ( ph  ->  ( x  e.  RR+  |->  ( 2  x.  (
( log `  x
)  /  2 ) ) )  e.  O
( 1 ) )
20110, 200eqeltrrd 2359 . 2  |-  ( ph  ->  ( x  e.  RR+  |->  ( log `  x ) )  e.  O ( 1 ) )
2021, 201mto 169 1  |-  -.  ph
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1624    e. wcel 1685    =/= wne 2447   E.wrex 2545   {crab 2548   _Vcvv 2789    \ cdif 3150    C_ wss 3153   ifcif 3566   class class class wbr 4024    e. cmpt 4078   ran crn 4689   -->wf 5217   -1-1->wf1 5218   -1-1-onto->wf1o 5220   ` cfv 5221  (class class class)co 5819   CCcc 8730   RRcr 8731   0cc0 8732   1c1 8733    x. cmul 8737    < clt 8862    <_ cle 8863    / cdiv 9418   NNcn 9741   2c2 9790   RR+crp 10349   ...cfz 10776   |_cfl 10918   ^cexp 11098   sqrcsqr 11712   abscabs 11713   O (
1 )co1 11954   sum_csu 12152    || cdivides 12525   Basecbs 13142   0gc0g 13394   ZRHomczrh 16445  ℤ/nczn 16448   logclog 19906  DChrcdchr 20465
This theorem is referenced by:  dchrisum0  20663
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-inf2 7337  ax-cnex 8788  ax-resscn 8789  ax-1cn 8790  ax-icn 8791  ax-addcl 8792  ax-addrcl 8793  ax-mulcl 8794  ax-mulrcl 8795  ax-mulcom 8796  ax-addass 8797  ax-mulass 8798  ax-distr 8799  ax-i2m1 8800  ax-1ne0 8801  ax-1rid 8802  ax-rnegex 8803  ax-rrecex 8804  ax-cnre 8805  ax-pre-lttri 8806  ax-pre-lttrn 8807  ax-pre-ltadd 8808  ax-pre-mulgt0 8809  ax-pre-sup 8810  ax-addf 8811  ax-mulf 8812
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-fal 1313  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-iin 3909  df-disj 3995  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-se 4352  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-isom 5230  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-of 6039  df-1st 6083  df-2nd 6084  df-tpos 6195  df-iota 6252  df-riota 6299  df-recs 6383  df-rdg 6418  df-1o 6474  df-2o 6475  df-oadd 6478  df-omul 6479  df-er 6655  df-ec 6657  df-qs 6661  df-map 6769  df-pm 6770  df-ixp 6813  df-en 6859  df-dom 6860  df-sdom 6861  df-fin 6862  df-fi 7160  df-sup 7189  df-oi 7220  df-card 7567  df-acn 7570  df-cda 7789  df-pnf 8864  df-mnf 8865  df-xr 8866  df-ltxr 8867  df-le 8868  df-sub 9034  df-neg 9035  df-div 9419  df-nn 9742  df-2 9799  df-3 9800  df-4 9801  df-5 9802  df-6 9803  df-7 9804  df-8 9805  df-9 9806  df-10 9807  df-n0 9961  df-z 10020  df-dec 10120  df-uz 10226  df-q 10312  df-rp 10350  df-xneg 10447  df-xadd 10448  df-xmul 10449  df-ioo 10654  df-ioc 10655  df-ico 10656  df-icc 10657  df-fz 10777  df-fzo 10865  df-fl 10919  df-mod 10968  df-seq 11041  df-exp 11099  df-fac 11283  df-bc 11310  df-hash 11332  df-shft 11556  df-cj 11578  df-re 11579  df-im 11580  df-sqr 11714  df-abs 11715  df-limsup 11939  df-clim 11956  df-rlim 11957  df-o1 11958  df-lo1 11959  df-sum 12153  df-ef 12343  df-e 12344  df-sin 12345  df-cos 12346  df-pi 12348  df-dvds 12526  df-gcd 12680  df-prm 12753  df-numer 12800  df-denom 12801  df-pc 12884  df-struct 13144  df-ndx 13145  df-slot 13146  df-base 13147  df-sets 13148  df-ress 13149  df-plusg 13215  df-mulr 13216  df-starv 13217  df-sca 13218  df-vsca 13219  df-tset 13221  df-ple 13222  df-ds 13224  df-hom 13226  df-cco 13227  df-rest 13321  df-topn 13322  df-topgen 13338  df-pt 13339  df-prds 13342  df-xrs 13397  df-0g 13398  df-gsum 13399  df-qtop 13404  df-imas 13405  df-divs 13406  df-xps 13407  df-mre 13482  df-mrc 13483  df-acs 13485  df-mnd 14361  df-mhm 14409  df-submnd 14410  df-grp 14483  df-minusg 14484  df-sbg 14485  df-mulg 14486  df-subg 14612  df-nsg 14613  df-eqg 14614  df-ghm 14675  df-cntz 14787  df-od 14838  df-cmn 15085  df-abl 15086  df-mgp 15320  df-rng 15334  df-cring 15335  df-ur 15336  df-oppr 15399  df-dvdsr 15417  df-unit 15418  df-invr 15448  df-dvr 15459  df-rnghom 15490  df-drng 15508  df-subrg 15537  df-lmod 15623  df-lss 15684  df-lsp 15723  df-sra 15919  df-rgmod 15920  df-lidl 15921  df-rsp 15922  df-2idl 15978  df-xmet 16367  df-met 16368  df-bl 16369  df-mopn 16370  df-cnfld 16372  df-zrh 16449  df-zn 16452  df-top 16630  df-bases 16632  df-topon 16633  df-topsp 16634  df-cld 16750  df-ntr 16751  df-cls 16752  df-nei 16829  df-lp 16862  df-perf 16863  df-cn 16951  df-cnp 16952  df-haus 17037  df-tx 17251  df-hmeo 17440  df-fbas 17514  df-fg 17515  df-fil 17535  df-fm 17627  df-flim 17628  df-flf 17629  df-xms 17879  df-ms 17880  df-tms 17881  df-cncf 18376  df-limc 19210  df-dv 19211  df-log 19908  df-cxp 19909  df-em 20281  df-dchr 20466
  Copyright terms: Public domain W3C validator