MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0lem2a Structured version   Unicode version

Theorem dchrisum0lem2a 21211
Description: Lemma for dchrisum0 21214. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum2.g  |-  G  =  (DChr `  N )
rpvmasum2.d  |-  D  =  ( Base `  G
)
rpvmasum2.1  |-  .1.  =  ( 0g `  G )
rpvmasum2.w  |-  W  =  { y  e.  ( D  \  {  .1.  } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 }
dchrisum0.b  |-  ( ph  ->  X  e.  W )
dchrisum0lem1.f  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  ( sqr `  a ) ) )
dchrisum0.c  |-  ( ph  ->  C  e.  ( 0 [,)  +oo ) )
dchrisum0.s  |-  ( ph  ->  seq  1 (  +  ,  F )  ~~>  S )
dchrisum0.1  |-  ( ph  ->  A. y  e.  ( 1 [,)  +oo )
( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  y ) )  -  S ) )  <_ 
( C  /  ( sqr `  y ) ) )
dchrisum0lem2.h  |-  H  =  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y
) ) ) )
dchrisum0lem2.u  |-  ( ph  ->  H  ~~> r  U )
Assertion
Ref Expression
dchrisum0lem2a  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  ( H `  (
( x ^ 2 )  /  m ) ) ) )  e.  O ( 1 ) )
Distinct variable groups:    x, m, y,  .1.    m, d, x, y, C    F, d, x, y   
a, d, m, x, y    m, N, x, y    ph, d, m, x    S, d, m, x, y    U, m, x    x, W   
m, Z, x, y    D, m, x, y    L, a, d, m, x, y    X, a, d, m, x, y    m, F
Allowed substitution hints:    ph( y, a)    C( a)    D( a, d)    S( a)    U( y, a, d)    .1. ( a, d)    F( a)    G( x, y, m, a, d)    H( x, y, m, a, d)    N( a, d)    W( y, m, a, d)    Z( a, d)

Proof of Theorem dchrisum0lem2a
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 11312 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 1 ... ( |_ `  x ) )  e. 
Fin )
2 simpl 444 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ph )
3 elfznn 11080 . . . . 5  |-  ( m  e.  ( 1 ... ( |_ `  x
) )  ->  m  e.  NN )
4 rpvmasum2.g . . . . . . 7  |-  G  =  (DChr `  N )
5 rpvmasum.z . . . . . . 7  |-  Z  =  (ℤ/n `  N )
6 rpvmasum2.d . . . . . . 7  |-  D  =  ( Base `  G
)
7 rpvmasum.l . . . . . . 7  |-  L  =  ( ZRHom `  Z
)
8 rpvmasum2.w . . . . . . . . . . 11  |-  W  =  { y  e.  ( D  \  {  .1.  } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 }
9 ssrab2 3428 . . . . . . . . . . 11  |-  { y  e.  ( D  \  {  .1.  } )  | 
sum_ m  e.  NN  ( ( y `  ( L `  m ) )  /  m )  =  0 }  C_  ( D  \  {  .1.  } )
108, 9eqsstri 3378 . . . . . . . . . 10  |-  W  C_  ( D  \  {  .1.  } )
11 dchrisum0.b . . . . . . . . . 10  |-  ( ph  ->  X  e.  W )
1210, 11sseldi 3346 . . . . . . . . 9  |-  ( ph  ->  X  e.  ( D 
\  {  .1.  }
) )
1312eldifad 3332 . . . . . . . 8  |-  ( ph  ->  X  e.  D )
1413adantr 452 . . . . . . 7  |-  ( (
ph  /\  m  e.  NN )  ->  X  e.  D )
15 nnz 10303 . . . . . . . 8  |-  ( m  e.  NN  ->  m  e.  ZZ )
1615adantl 453 . . . . . . 7  |-  ( (
ph  /\  m  e.  NN )  ->  m  e.  ZZ )
174, 5, 6, 7, 14, 16dchrzrhcl 21029 . . . . . 6  |-  ( (
ph  /\  m  e.  NN )  ->  ( X `
 ( L `  m ) )  e.  CC )
18 nnrp 10621 . . . . . . . . 9  |-  ( m  e.  NN  ->  m  e.  RR+ )
1918adantl 453 . . . . . . . 8  |-  ( (
ph  /\  m  e.  NN )  ->  m  e.  RR+ )
2019rpsqrcld 12214 . . . . . . 7  |-  ( (
ph  /\  m  e.  NN )  ->  ( sqr `  m )  e.  RR+ )
2120rpcnd 10650 . . . . . 6  |-  ( (
ph  /\  m  e.  NN )  ->  ( sqr `  m )  e.  CC )
2220rpne0d 10653 . . . . . 6  |-  ( (
ph  /\  m  e.  NN )  ->  ( sqr `  m )  =/=  0
)
2317, 21, 22divcld 9790 . . . . 5  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  e.  CC )
242, 3, 23syl2an 464 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( X `  ( L `  m ) )  / 
( sqr `  m
) )  e.  CC )
251, 24fsumcl 12527 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  e.  CC )
26 dchrisum0lem2.u . . . . 5  |-  ( ph  ->  H  ~~> r  U )
27 rlimcl 12297 . . . . 5  |-  ( H  ~~> r  U  ->  U  e.  CC )
2826, 27syl 16 . . . 4  |-  ( ph  ->  U  e.  CC )
2928adantr 452 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  U  e.  CC )
30 0xr 9131 . . . . . . . . 9  |-  0  e.  RR*
31 0lt1 9550 . . . . . . . . 9  |-  0  <  1
32 df-ioo 10920 . . . . . . . . . 10  |-  (,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <  z  /\  z  <  y ) } )
33 df-ico 10922 . . . . . . . . . 10  |-  [,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <_  z  /\  z  <  y ) } )
34 xrltletr 10747 . . . . . . . . . 10  |-  ( ( 0  e.  RR*  /\  1  e.  RR*  /\  w  e. 
RR* )  ->  (
( 0  <  1  /\  1  <_  w )  ->  0  <  w
) )
3532, 33, 34ixxss1 10934 . . . . . . . . 9  |-  ( ( 0  e.  RR*  /\  0  <  1 )  ->  (
1 [,)  +oo )  C_  ( 0 (,)  +oo ) )
3630, 31, 35mp2an 654 . . . . . . . 8  |-  ( 1 [,)  +oo )  C_  (
0 (,)  +oo )
37 ioorp 10988 . . . . . . . 8  |-  ( 0 (,)  +oo )  =  RR+
3836, 37sseqtri 3380 . . . . . . 7  |-  ( 1 [,)  +oo )  C_  RR+
39 resmpt 5191 . . . . . . 7  |-  ( ( 1 [,)  +oo )  C_  RR+  ->  ( ( x  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  |`  ( 1 [,)  +oo ) )  =  ( x  e.  ( 1 [,)  +oo )  |->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) ) )
4038, 39ax-mp 8 . . . . . 6  |-  ( ( x  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  |`  ( 1 [,)  +oo ) )  =  ( x  e.  ( 1 [,)  +oo )  |->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )
4138sseli 3344 . . . . . . . . 9  |-  ( x  e.  ( 1 [,) 
+oo )  ->  x  e.  RR+ )
423adantl 453 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  m  e.  NN )
43 fveq2 5728 . . . . . . . . . . . . 13  |-  ( a  =  m  ->  ( L `  a )  =  ( L `  m ) )
4443fveq2d 5732 . . . . . . . . . . . 12  |-  ( a  =  m  ->  ( X `  ( L `  a ) )  =  ( X `  ( L `  m )
) )
45 fveq2 5728 . . . . . . . . . . . 12  |-  ( a  =  m  ->  ( sqr `  a )  =  ( sqr `  m
) )
4644, 45oveq12d 6099 . . . . . . . . . . 11  |-  ( a  =  m  ->  (
( X `  ( L `  a )
)  /  ( sqr `  a ) )  =  ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )
47 dchrisum0lem1.f . . . . . . . . . . 11  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  ( sqr `  a ) ) )
48 ovex 6106 . . . . . . . . . . 11  |-  ( ( X `  ( L `
 a ) )  /  ( sqr `  a
) )  e.  _V
4946, 47, 48fvmpt3i 5809 . . . . . . . . . 10  |-  ( m  e.  NN  ->  ( F `  m )  =  ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) ) )
5042, 49syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( F `  m )  =  ( ( X `  ( L `  m )
)  /  ( sqr `  m ) ) )
5141, 50sylanl2 633 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( 1 [,)  +oo ) )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( F `  m )  =  ( ( X `  ( L `  m )
)  /  ( sqr `  m ) ) )
52 1re 9090 . . . . . . . . . . . 12  |-  1  e.  RR
53 elicopnf 11000 . . . . . . . . . . . 12  |-  ( 1  e.  RR  ->  (
x  e.  ( 1 [,)  +oo )  <->  ( x  e.  RR  /\  1  <_  x ) ) )
5452, 53ax-mp 8 . . . . . . . . . . 11  |-  ( x  e.  ( 1 [,) 
+oo )  <->  ( x  e.  RR  /\  1  <_  x ) )
55 flge1nn 11226 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  1  <_  x )  -> 
( |_ `  x
)  e.  NN )
5654, 55sylbi 188 . . . . . . . . . 10  |-  ( x  e.  ( 1 [,) 
+oo )  ->  ( |_ `  x )  e.  NN )
5756adantl 453 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 [,)  +oo ) )  ->  ( |_ `  x )  e.  NN )
58 nnuz 10521 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
5957, 58syl6eleq 2526 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 [,)  +oo ) )  ->  ( |_ `  x )  e.  ( ZZ>= `  1 )
)
6041, 24sylanl2 633 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( 1 [,)  +oo ) )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( X `  ( L `  m ) )  / 
( sqr `  m
) )  e.  CC )
6151, 59, 60fsumser 12524 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 [,)  +oo ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  =  (  seq  1 (  +  ,  F ) `
 ( |_ `  x ) ) )
6261mpteq2dva 4295 . . . . . 6  |-  ( ph  ->  ( x  e.  ( 1 [,)  +oo )  |-> 
sum_ m  e.  (
1 ... ( |_ `  x ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  m ) ) )  =  ( x  e.  ( 1 [,)  +oo )  |->  (  seq  1
(  +  ,  F
) `  ( |_ `  x ) ) ) )
6340, 62syl5eq 2480 . . . . 5  |-  ( ph  ->  ( ( x  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  |`  ( 1 [,)  +oo ) )  =  ( x  e.  ( 1 [,)  +oo )  |->  (  seq  1 (  +  ,  F ) `  ( |_ `  x ) ) ) )
64 fveq2 5728 . . . . . . 7  |-  ( m  =  ( |_ `  x )  ->  (  seq  1 (  +  ,  F ) `  m
)  =  (  seq  1 (  +  ,  F ) `  ( |_ `  x ) ) )
65 rpssre 10622 . . . . . . . . 9  |-  RR+  C_  RR
6665a1i 11 . . . . . . . 8  |-  ( ph  -> 
RR+  C_  RR )
6738, 66syl5ss 3359 . . . . . . 7  |-  ( ph  ->  ( 1 [,)  +oo )  C_  RR )
68 1z 10311 . . . . . . . 8  |-  1  e.  ZZ
6968a1i 11 . . . . . . 7  |-  ( ph  ->  1  e.  ZZ )
7046cbvmptv 4300 . . . . . . . . . . . . 13  |-  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  /  ( sqr `  a
) ) )  =  ( m  e.  NN  |->  ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )
7147, 70eqtri 2456 . . . . . . . . . . . 12  |-  F  =  ( m  e.  NN  |->  ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )
7223, 71fmptd 5893 . . . . . . . . . . 11  |-  ( ph  ->  F : NN --> CC )
7372ffvelrnda 5870 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN )  ->  ( F `
 m )  e.  CC )
7458, 69, 73serf 11351 . . . . . . . . 9  |-  ( ph  ->  seq  1 (  +  ,  F ) : NN --> CC )
7574feqmptd 5779 . . . . . . . 8  |-  ( ph  ->  seq  1 (  +  ,  F )  =  ( m  e.  NN  |->  (  seq  1 (  +  ,  F ) `  m ) ) )
76 dchrisum0.s . . . . . . . 8  |-  ( ph  ->  seq  1 (  +  ,  F )  ~~>  S )
7775, 76eqbrtrrd 4234 . . . . . . 7  |-  ( ph  ->  ( m  e.  NN  |->  (  seq  1 (  +  ,  F ) `  m ) )  ~~>  S )
7874ffvelrnda 5870 . . . . . . 7  |-  ( (
ph  /\  m  e.  NN )  ->  (  seq  1 (  +  ,  F ) `  m
)  e.  CC )
7954simprbi 451 . . . . . . . 8  |-  ( x  e.  ( 1 [,) 
+oo )  ->  1  <_  x )
8079adantl 453 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 [,)  +oo ) )  ->  1  <_  x )
8158, 64, 67, 69, 77, 78, 80climrlim2 12341 . . . . . 6  |-  ( ph  ->  ( x  e.  ( 1 [,)  +oo )  |->  (  seq  1 (  +  ,  F ) `
 ( |_ `  x ) ) )  ~~> r  S )
82 rlimo1 12410 . . . . . 6  |-  ( ( x  e.  ( 1 [,)  +oo )  |->  (  seq  1 (  +  ,  F ) `  ( |_ `  x ) ) )  ~~> r  S  -> 
( x  e.  ( 1 [,)  +oo )  |->  (  seq  1 (  +  ,  F ) `
 ( |_ `  x ) ) )  e.  O ( 1 ) )
8381, 82syl 16 . . . . 5  |-  ( ph  ->  ( x  e.  ( 1 [,)  +oo )  |->  (  seq  1 (  +  ,  F ) `
 ( |_ `  x ) ) )  e.  O ( 1 ) )
8463, 83eqeltrd 2510 . . . 4  |-  ( ph  ->  ( ( x  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  |`  ( 1 [,)  +oo ) )  e.  O
( 1 ) )
85 eqid 2436 . . . . . 6  |-  ( x  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  =  ( x  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )
8625, 85fmptd 5893 . . . . 5  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  m ) ) ) : RR+ --> CC )
8752a1i 11 . . . . 5  |-  ( ph  ->  1  e.  RR )
8886, 66, 87o1resb 12360 . . . 4  |-  ( ph  ->  ( ( x  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  e.  O ( 1 )  <->  ( ( x  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  |`  ( 1 [,)  +oo ) )  e.  O
( 1 ) ) )
8984, 88mpbird 224 . . 3  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  m ) ) )  e.  O ( 1 ) )
90 o1const 12413 . . . 4  |-  ( (
RR+  C_  RR  /\  U  e.  CC )  ->  (
x  e.  RR+  |->  U )  e.  O ( 1 ) )
9165, 28, 90sylancr 645 . . 3  |-  ( ph  ->  ( x  e.  RR+  |->  U )  e.  O
( 1 ) )
9225, 29, 89, 91o1mul2 12418 . 2  |-  ( ph  ->  ( x  e.  RR+  |->  ( sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  U ) )  e.  O ( 1 ) )
93 simpr 448 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR+ )
94 2z 10312 . . . . . . . . 9  |-  2  e.  ZZ
95 rpexpcl 11400 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  2  e.  ZZ )  ->  (
x ^ 2 )  e.  RR+ )
9693, 94, 95sylancl 644 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x ^ 2 )  e.  RR+ )
973nnrpd 10647 . . . . . . . 8  |-  ( m  e.  ( 1 ... ( |_ `  x
) )  ->  m  e.  RR+ )
98 rpdivcl 10634 . . . . . . . 8  |-  ( ( ( x ^ 2 )  e.  RR+  /\  m  e.  RR+ )  ->  (
( x ^ 2 )  /  m )  e.  RR+ )
9996, 97, 98syl2an 464 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
x ^ 2 )  /  m )  e.  RR+ )
100 dchrisum0lem2.h . . . . . . . . 9  |-  H  =  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y
) ) ) )
101100divsqrsumf 20819 . . . . . . . 8  |-  H : RR+
--> RR
102101ffvelrni 5869 . . . . . . 7  |-  ( ( ( x ^ 2 )  /  m )  e.  RR+  ->  ( H `
 ( ( x ^ 2 )  /  m ) )  e.  RR )
10399, 102syl 16 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( H `  ( ( x ^
2 )  /  m
) )  e.  RR )
104103recnd 9114 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( H `  ( ( x ^
2 )  /  m
) )  e.  CC )
10524, 104mulcld 9108 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  ( H `  (
( x ^ 2 )  /  m ) ) )  e.  CC )
1061, 105fsumcl 12527 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  ( H `  ( (
x ^ 2 )  /  m ) ) )  e.  CC )
10725, 29mulcld 9108 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  x.  U
)  e.  CC )
10826ad2antrr 707 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  H  ~~> r  U
)
109108, 27syl 16 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  U  e.  CC )
11024, 109mulcld 9108 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  U )  e.  CC )
1111, 105, 110fsumsub 12571 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  x.  ( H `  ( (
x ^ 2 )  /  m ) ) )  -  ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  U ) )  =  ( sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  ( H `  ( (
x ^ 2 )  /  m ) ) )  -  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  U
) ) )
11224, 104, 109subdid 9489 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) )  =  ( ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  ( H `  ( (
x ^ 2 )  /  m ) ) )  -  ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  U ) ) )
113112sumeq2dv 12497 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  (
( H `  (
( x ^ 2 )  /  m ) )  -  U ) )  =  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  x.  ( H `  ( (
x ^ 2 )  /  m ) ) )  -  ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  U ) ) )
1141, 29, 24fsummulc1 12568 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  x.  U
)  =  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  U
) )
115114oveq2d 6097 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  ( H `  (
( x ^ 2 )  /  m ) ) )  -  ( sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  U ) )  =  ( sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  ( H `  ( (
x ^ 2 )  /  m ) ) )  -  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  U
) ) )
116111, 113, 1153eqtr4d 2478 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  (
( H `  (
( x ^ 2 )  /  m ) )  -  U ) )  =  ( sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  ( H `  (
( x ^ 2 )  /  m ) ) )  -  ( sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  U ) ) )
117116mpteq2dva 4295 . . . 4  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) ) )  =  ( x  e.  RR+  |->  ( sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  ( H `  ( (
x ^ 2 )  /  m ) ) )  -  ( sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  x.  U
) ) ) )
118104, 109subcld 9411 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( H `  ( (
x ^ 2 )  /  m ) )  -  U )  e.  CC )
11924, 118mulcld 9108 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) )  e.  CC )
1201, 119fsumcl 12527 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  (
( H `  (
( x ^ 2 )  /  m ) )  -  U ) )  e.  CC )
121120abscld 12238 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs ` 
sum_ m  e.  (
1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) ) )  e.  RR )
122119abscld 12238 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  (
( H `  (
( x ^ 2 )  /  m ) )  -  U ) ) )  e.  RR )
1231, 122fsumrecl 12528 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) ) )  e.  RR )
12452a1i 11 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  1  e.  RR )
1251, 119fsumabs 12580 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs ` 
sum_ m  e.  (
1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) ) )  <_  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( abs `  ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) ) ) )
126 rprege0 10626 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  ( x  e.  RR  /\  0  <_  x ) )
127126adantl 453 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x  e.  RR  /\  0  <_  x ) )
128127simpld 446 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR )
129 reflcl 11205 . . . . . . . . . 10  |-  ( x  e.  RR  ->  ( |_ `  x )  e.  RR )
130128, 129syl 16 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( |_ `  x )  e.  RR )
131130, 93rerpdivcld 10675 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( |_ `  x )  /  x )  e.  RR )
132 simplr 732 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR+ )
133132rprecred 10659 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  /  x )  e.  RR )
13424abscld 12238 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  e.  RR )
13597rpsqrcld 12214 . . . . . . . . . . . . . 14  |-  ( m  e.  ( 1 ... ( |_ `  x
) )  ->  ( sqr `  m )  e.  RR+ )
136135adantl 453 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  m )  e.  RR+ )
137136rprecred 10659 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  /  ( sqr `  m
) )  e.  RR )
138118abscld 12238 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) )  e.  RR )
139136, 132rpdivcld 10665 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sqr `  m )  /  x )  e.  RR+ )
14065, 139sseldi 3346 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sqr `  m )  /  x )  e.  RR )
14124absge0d 12246 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( abs `  ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) ) ) )
142118absge0d 12246 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( abs `  ( ( H `  ( ( x ^ 2 )  /  m ) )  -  U ) ) )
1432, 3, 17syl2an 464 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( X `  ( L `  m
) )  e.  CC )
144136rpcnd 10650 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  m )  e.  CC )
145136rpne0d 10653 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  m )  =/=  0
)
146143, 144, 145absdivd 12257 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  =  ( ( abs `  ( X `  ( L `  m )
) )  /  ( abs `  ( sqr `  m
) ) ) )
147136rprege0d 10655 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sqr `  m )  e.  RR  /\  0  <_ 
( sqr `  m
) ) )
148 absid 12101 . . . . . . . . . . . . . . . 16  |-  ( ( ( sqr `  m
)  e.  RR  /\  0  <_  ( sqr `  m
) )  ->  ( abs `  ( sqr `  m
) )  =  ( sqr `  m ) )
149147, 148syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( sqr `  m
) )  =  ( sqr `  m ) )
150149oveq2d 6097 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( X `  ( L `  m ) ) )  /  ( abs `  ( sqr `  m
) ) )  =  ( ( abs `  ( X `  ( L `  m ) ) )  /  ( sqr `  m
) ) )
151146, 150eqtrd 2468 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  =  ( ( abs `  ( X `  ( L `  m )
) )  /  ( sqr `  m ) ) )
152143abscld 12238 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( X `  ( L `  m )
) )  e.  RR )
15352a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  e.  RR )
154 eqid 2436 . . . . . . . . . . . . . . 15  |-  ( Base `  Z )  =  (
Base `  Z )
15513ad2antrr 707 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  X  e.  D )
156 rpvmasum.a . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  N  e.  NN )
157156nnnn0d 10274 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  N  e.  NN0 )
1585, 154, 7znzrhfo 16828 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  NN0  ->  L : ZZ -onto-> ( Base `  Z
) )
159 fof 5653 . . . . . . . . . . . . . . . . . 18  |-  ( L : ZZ -onto-> ( Base `  Z )  ->  L : ZZ --> ( Base `  Z
) )
160157, 158, 1593syl 19 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  L : ZZ --> ( Base `  Z ) )
161160adantr 452 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  RR+ )  ->  L : ZZ
--> ( Base `  Z
) )
162 elfzelz 11059 . . . . . . . . . . . . . . . 16  |-  ( m  e.  ( 1 ... ( |_ `  x
) )  ->  m  e.  ZZ )
163 ffvelrn 5868 . . . . . . . . . . . . . . . 16  |-  ( ( L : ZZ --> ( Base `  Z )  /\  m  e.  ZZ )  ->  ( L `  m )  e.  ( Base `  Z
) )
164161, 162, 163syl2an 464 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( L `  m )  e.  (
Base `  Z )
)
1654, 6, 5, 154, 155, 164dchrabs2 21046 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( X `  ( L `  m )
) )  <_  1
)
166152, 153, 136, 165lediv1dd 10702 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( X `  ( L `  m ) ) )  /  ( sqr `  m ) )  <_  ( 1  / 
( sqr `  m
) ) )
167151, 166eqbrtrd 4232 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  <_  ( 1  / 
( sqr `  m
) ) )
168100, 108divsqrsum2 20821 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  /\  ( ( x ^ 2 )  /  m )  e.  RR+ )  ->  ( abs `  (
( H `  (
( x ^ 2 )  /  m ) )  -  U ) )  <_  ( 1  /  ( sqr `  (
( x ^ 2 )  /  m ) ) ) )
16999, 168mpdan 650 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) )  <_  (
1  /  ( sqr `  ( ( x ^
2 )  /  m
) ) ) )
17096rprege0d 10655 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
x ^ 2 )  e.  RR  /\  0  <_  ( x ^ 2 ) ) )
171 sqrdiv 12071 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( x ^
2 )  e.  RR  /\  0  <_  ( x ^ 2 ) )  /\  m  e.  RR+ )  ->  ( sqr `  (
( x ^ 2 )  /  m ) )  =  ( ( sqr `  ( x ^ 2 ) )  /  ( sqr `  m
) ) )
172170, 97, 171syl2an 464 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  ( ( x ^
2 )  /  m
) )  =  ( ( sqr `  (
x ^ 2 ) )  /  ( sqr `  m ) ) )
173126ad2antlr 708 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  e.  RR  /\  0  <_  x ) )
174 sqrsq 12075 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR  /\  0  <_  x )  -> 
( sqr `  (
x ^ 2 ) )  =  x )
175173, 174syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  ( x ^ 2 ) )  =  x )
176175oveq1d 6096 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sqr `  ( x ^
2 ) )  / 
( sqr `  m
) )  =  ( x  /  ( sqr `  m ) ) )
177172, 176eqtrd 2468 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  ( ( x ^
2 )  /  m
) )  =  ( x  /  ( sqr `  m ) ) )
178177oveq2d 6097 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  /  ( sqr `  (
( x ^ 2 )  /  m ) ) )  =  ( 1  /  ( x  /  ( sqr `  m
) ) ) )
179 rpcnne0 10629 . . . . . . . . . . . . . . . 16  |-  ( x  e.  RR+  ->  ( x  e.  CC  /\  x  =/=  0 ) )
180179ad2antlr 708 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  e.  CC  /\  x  =/=  0 ) )
181136rpcnne0d 10657 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sqr `  m )  e.  CC  /\  ( sqr `  m )  =/=  0
) )
182 recdiv 9720 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  CC  /\  x  =/=  0 )  /\  ( ( sqr `  m )  e.  CC  /\  ( sqr `  m
)  =/=  0 ) )  ->  ( 1  /  ( x  / 
( sqr `  m
) ) )  =  ( ( sqr `  m
)  /  x ) )
183180, 181, 182syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  /  ( x  / 
( sqr `  m
) ) )  =  ( ( sqr `  m
)  /  x ) )
184178, 183eqtrd 2468 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  /  ( sqr `  (
( x ^ 2 )  /  m ) ) )  =  ( ( sqr `  m
)  /  x ) )
185169, 184breqtrd 4236 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) )  <_  (
( sqr `  m
)  /  x ) )
186134, 137, 138, 140, 141, 142, 167, 185lemul12ad 9953 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) ) )  x.  ( abs `  (
( H `  (
( x ^ 2 )  /  m ) )  -  U ) ) )  <_  (
( 1  /  ( sqr `  m ) )  x.  ( ( sqr `  m )  /  x
) ) )
18724, 118absmuld 12256 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  (
( H `  (
( x ^ 2 )  /  m ) )  -  U ) ) )  =  ( ( abs `  (
( X `  ( L `  m )
)  /  ( sqr `  m ) ) )  x.  ( abs `  (
( H `  (
( x ^ 2 )  /  m ) )  -  U ) ) ) )
188 ax-1cn 9048 . . . . . . . . . . . . . 14  |-  1  e.  CC
189188a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  e.  CC )
190 dmdcan 9724 . . . . . . . . . . . . 13  |-  ( ( ( ( sqr `  m
)  e.  CC  /\  ( sqr `  m )  =/=  0 )  /\  ( x  e.  CC  /\  x  =/=  0 )  /\  1  e.  CC )  ->  ( ( ( sqr `  m )  /  x )  x.  ( 1  /  ( sqr `  m ) ) )  =  ( 1  /  x ) )
191181, 180, 189, 190syl3anc 1184 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( sqr `  m
)  /  x )  x.  ( 1  / 
( sqr `  m
) ) )  =  ( 1  /  x
) )
192139rpcnd 10650 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sqr `  m )  /  x )  e.  CC )
193 reccl 9685 . . . . . . . . . . . . . 14  |-  ( ( ( sqr `  m
)  e.  CC  /\  ( sqr `  m )  =/=  0 )  -> 
( 1  /  ( sqr `  m ) )  e.  CC )
194181, 193syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  /  ( sqr `  m
) )  e.  CC )
195192, 194mulcomd 9109 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( sqr `  m
)  /  x )  x.  ( 1  / 
( sqr `  m
) ) )  =  ( ( 1  / 
( sqr `  m
) )  x.  (
( sqr `  m
)  /  x ) ) )
196191, 195eqtr3d 2470 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  /  x )  =  ( ( 1  / 
( sqr `  m
) )  x.  (
( sqr `  m
)  /  x ) ) )
197186, 187, 1963brtr4d 4242 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  (
( H `  (
( x ^ 2 )  /  m ) )  -  U ) ) )  <_  (
1  /  x ) )
1981, 122, 133, 197fsumle 12578 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) ) )  <_  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  x ) )
199 flge0nn0 11225 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  0  <_  x )  -> 
( |_ `  x
)  e.  NN0 )
200 hashfz1 11630 . . . . . . . . . . . 12  |-  ( ( |_ `  x )  e.  NN0  ->  ( # `  ( 1 ... ( |_ `  x ) ) )  =  ( |_
`  x ) )
201127, 199, 2003syl 19 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( # `  (
1 ... ( |_ `  x ) ) )  =  ( |_ `  x ) )
202201oveq1d 6096 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( # `
 ( 1 ... ( |_ `  x
) ) )  x.  ( 1  /  x
) )  =  ( ( |_ `  x
)  x.  ( 1  /  x ) ) )
20393rpreccld 10658 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 1  /  x )  e.  RR+ )
204203rpcnd 10650 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 1  /  x )  e.  CC )
205 fsumconst 12573 . . . . . . . . . . 11  |-  ( ( ( 1 ... ( |_ `  x ) )  e.  Fin  /\  (
1  /  x )  e.  CC )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  x )  =  ( ( # `  ( 1 ... ( |_ `  x ) ) )  x.  ( 1  /  x ) ) )
2061, 204, 205syl2anc 643 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  x
)  =  ( (
# `  ( 1 ... ( |_ `  x
) ) )  x.  ( 1  /  x
) ) )
207130recnd 9114 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( |_ `  x )  e.  CC )
208179adantl 453 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x  e.  CC  /\  x  =/=  0 ) )
209208simpld 446 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  CC )
210208simprd 450 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  =/=  0 )
211207, 209, 210divrecd 9793 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( |_ `  x )  /  x )  =  ( ( |_ `  x
)  x.  ( 1  /  x ) ) )
212202, 206, 2113eqtr4d 2478 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  x
)  =  ( ( |_ `  x )  /  x ) )
213198, 212breqtrd 4236 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) ) )  <_ 
( ( |_ `  x )  /  x
) )
214 flle 11208 . . . . . . . . . . 11  |-  ( x  e.  RR  ->  ( |_ `  x )  <_  x )
215128, 214syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( |_ `  x )  <_  x
)
216128recnd 9114 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  CC )
217216mulid1d 9105 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x  x.  1 )  =  x )
218215, 217breqtrrd 4238 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( |_ `  x )  <_  (
x  x.  1 ) )
219 rpregt0 10625 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( x  e.  RR  /\  0  <  x ) )
220219adantl 453 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x  e.  RR  /\  0  < 
x ) )
221 ledivmul 9883 . . . . . . . . . 10  |-  ( ( ( |_ `  x
)  e.  RR  /\  1  e.  RR  /\  (
x  e.  RR  /\  0  <  x ) )  ->  ( ( ( |_ `  x )  /  x )  <_ 
1  <->  ( |_ `  x )  <_  (
x  x.  1 ) ) )
222130, 124, 220, 221syl3anc 1184 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
( |_ `  x
)  /  x )  <_  1  <->  ( |_ `  x )  <_  (
x  x.  1 ) ) )
223218, 222mpbird 224 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( |_ `  x )  /  x )  <_  1
)
224123, 131, 124, 213, 223letrd 9227 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) ) )  <_ 
1 )
225121, 123, 124, 125, 224letrd 9227 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs ` 
sum_ m  e.  (
1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) ) )  <_ 
1 )
226225adantrr 698 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  x.  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) ) )  <_ 
1 )
22766, 120, 87, 87, 226elo1d 12330 . . . 4  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  ( ( H `  ( ( x ^
2 )  /  m
) )  -  U
) ) )  e.  O ( 1 ) )
228117, 227eqeltrrd 2511 . . 3  |-  ( ph  ->  ( x  e.  RR+  |->  ( sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  ( H `  ( (
x ^ 2 )  /  m ) ) )  -  ( sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  x.  U
) ) )  e.  O ( 1 ) )
229106, 107, 228o1dif 12423 . 2  |-  ( ph  ->  ( ( x  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  x.  ( H `  ( (
x ^ 2 )  /  m ) ) ) )  e.  O
( 1 )  <->  ( x  e.  RR+  |->  ( sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  U ) )  e.  O ( 1 ) ) )
23092, 229mpbird 224 1  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  x.  ( H `  (
( x ^ 2 )  /  m ) ) ) )  e.  O ( 1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2599   A.wral 2705   {crab 2709    \ cdif 3317    C_ wss 3320   {csn 3814   class class class wbr 4212    e. cmpt 4266    |` cres 4880   -->wf 5450   -onto->wfo 5452   ` cfv 5454  (class class class)co 6081   Fincfn 7109   CCcc 8988   RRcr 8989   0cc0 8990   1c1 8991    + caddc 8993    x. cmul 8995    +oocpnf 9117   RR*cxr 9119    < clt 9120    <_ cle 9121    - cmin 9291    / cdiv 9677   NNcn 10000   2c2 10049   NN0cn0 10221   ZZcz 10282   ZZ>=cuz 10488   RR+crp 10612   (,)cioo 10916   [,)cico 10918   ...cfz 11043   |_cfl 11201    seq cseq 11323   ^cexp 11382   #chash 11618   sqrcsqr 12038   abscabs 12039    ~~> cli 12278    ~~> r crli 12279   O (
1 )co1 12280   sum_csu 12479   Basecbs 13469   0gc0g 13723   ZRHomczrh 16778  ℤ/nczn 16781  DChrcdchr 21016
This theorem is referenced by:  dchrisum0lem2  21212
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068  ax-addf 9069  ax-mulf 9070
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-iin 4096  df-disj 4183  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-of 6305  df-1st 6349  df-2nd 6350  df-tpos 6479  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-2o 6725  df-oadd 6728  df-omul 6729  df-er 6905  df-ec 6907  df-qs 6911  df-map 7020  df-pm 7021  df-ixp 7064  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-fi 7416  df-sup 7446  df-oi 7479  df-card 7826  df-acn 7829  df-cda 8048  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-4 10060  df-5 10061  df-6 10062  df-7 10063  df-8 10064  df-9 10065  df-10 10066  df-n0 10222  df-z 10283  df-dec 10383  df-uz 10489  df-q 10575  df-rp 10613  df-xneg 10710  df-xadd 10711  df-xmul 10712  df-ioo 10920  df-ioc 10921  df-ico 10922  df-icc 10923  df-fz 11044  df-fzo 11136  df-fl 11202  df-mod 11251  df-seq 11324  df-exp 11383  df-fac 11567  df-bc 11594  df-hash 11619  df-shft 11882  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-limsup 12265  df-clim 12282  df-rlim 12283  df-o1 12284  df-lo1 12285  df-sum 12480  df-ef 12670  df-sin 12672  df-cos 12673  df-pi 12675  df-dvds 12853  df-struct 13471  df-ndx 13472  df-slot 13473  df-base 13474  df-sets 13475  df-ress 13476  df-plusg 13542  df-mulr 13543  df-starv 13544  df-sca 13545  df-vsca 13546  df-tset 13548  df-ple 13549  df-ds 13551  df-unif 13552  df-hom 13553  df-cco 13554  df-rest 13650  df-topn 13651  df-topgen 13667  df-pt 13668  df-prds 13671  df-xrs 13726  df-0g 13727  df-gsum 13728  df-qtop 13733  df-imas 13734  df-divs 13735  df-xps 13736  df-mre 13811  df-mrc 13812  df-acs 13814  df-mnd 14690  df-mhm 14738  df-submnd 14739  df-grp 14812  df-minusg 14813  df-sbg 14814  df-mulg 14815  df-subg 14941  df-nsg 14942  df-eqg 14943  df-ghm 15004  df-cntz 15116  df-od 15167  df-cmn 15414  df-abl 15415  df-mgp 15649  df-rng 15663  df-cring 15664  df-ur 15665  df-oppr 15728  df-dvdsr 15746  df-unit 15747  df-invr 15777  df-dvr 15788  df-rnghom 15819  df-drng 15837  df-subrg 15866  df-lmod 15952  df-lss 16009  df-lsp 16048  df-sra 16244  df-rgmod 16245  df-lidl 16246  df-rsp 16247  df-2idl 16303  df-psmet 16694  df-xmet 16695  df-met 16696  df-bl 16697  df-mopn 16698  df-fbas 16699  df-fg 16700  df-cnfld 16704  df-zrh 16782  df-zn 16785  df-top 16963  df-bases 16965  df-topon 16966  df-topsp 16967  df-cld 17083  df-ntr 17084  df-cls 17085  df-nei 17162  df-lp 17200  df-perf 17201  df-cn 17291  df-cnp 17292  df-haus 17379  df-cmp 17450  df-tx 17594  df-hmeo 17787  df-fil 17878  df-fm 17970  df-flim 17971  df-flf 17972  df-xms 18350  df-ms 18351  df-tms 18352  df-cncf 18908  df-limc 19753  df-dv 19754  df-log 20454  df-cxp 20455  df-dchr 21017
  Copyright terms: Public domain W3C validator