MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0re Unicode version

Theorem dchrisum0re 20658
Description: Suppose  X is a non-principal Dirichlet character with  sum_ n  e.  NN ,  X ( n )  /  n  =  0. Then  X is a real character. Part of Lemma 9.4.4 of [Shapiro], p. 382. (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum2.g  |-  G  =  (DChr `  N )
rpvmasum2.d  |-  D  =  ( Base `  G
)
rpvmasum2.1  |-  .1.  =  ( 0g `  G )
rpvmasum2.w  |-  W  =  { y  e.  ( D  \  {  .1.  } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 }
dchrisum0.b  |-  ( ph  ->  X  e.  W )
Assertion
Ref Expression
dchrisum0re  |-  ( ph  ->  X : ( Base `  Z ) --> RR )
Distinct variable groups:    y, m,  .1.    m, N, y    ph, m    m, Z, y    D, m, y    m, L, y   
m, X, y
Dummy variables  k  n  x  f  c  t  a are mutually distinct and distinct from all other variables.
Allowed substitution groups:    ph( y)    G( y, m)    W( y, m)

Proof of Theorem dchrisum0re
StepHypRef Expression
1 rpvmasum2.g . . . 4  |-  G  =  (DChr `  N )
2 rpvmasum.z . . . 4  |-  Z  =  (ℤ/n `  N )
3 rpvmasum2.d . . . 4  |-  D  =  ( Base `  G
)
4 eqid 2286 . . . 4  |-  ( Base `  Z )  =  (
Base `  Z )
5 rpvmasum2.w . . . . . . 7  |-  W  =  { y  e.  ( D  \  {  .1.  } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 }
6 ssrab2 3261 . . . . . . 7  |-  { y  e.  ( D  \  {  .1.  } )  | 
sum_ m  e.  NN  ( ( y `  ( L `  m ) )  /  m )  =  0 }  C_  ( D  \  {  .1.  } )
75, 6eqsstri 3211 . . . . . 6  |-  W  C_  ( D  \  {  .1.  } )
8 dchrisum0.b . . . . . 6  |-  ( ph  ->  X  e.  W )
97, 8sseldi 3181 . . . . 5  |-  ( ph  ->  X  e.  ( D 
\  {  .1.  }
) )
10 eldifi 3301 . . . . 5  |-  ( X  e.  ( D  \  {  .1.  } )  ->  X  e.  D )
119, 10syl 17 . . . 4  |-  ( ph  ->  X  e.  D )
121, 2, 3, 4, 11dchrf 20477 . . 3  |-  ( ph  ->  X : ( Base `  Z ) --> CC )
13 ffn 5356 . . 3  |-  ( X : ( Base `  Z
) --> CC  ->  X  Fn  ( Base `  Z
) )
1412, 13syl 17 . 2  |-  ( ph  ->  X  Fn  ( Base `  Z ) )
15 ffvelrn 5626 . . . . 5  |-  ( ( X : ( Base `  Z ) --> CC  /\  x  e.  ( Base `  Z ) )  -> 
( X `  x
)  e.  CC )
1612, 15sylan 459 . . . 4  |-  ( (
ph  /\  x  e.  ( Base `  Z )
)  ->  ( X `  x )  e.  CC )
17 fvco3 5559 . . . . . 6  |-  ( ( X : ( Base `  Z ) --> CC  /\  x  e.  ( Base `  Z ) )  -> 
( ( *  o.  X ) `  x
)  =  ( * `
 ( X `  x ) ) )
1812, 17sylan 459 . . . . 5  |-  ( (
ph  /\  x  e.  ( Base `  Z )
)  ->  ( (
*  o.  X ) `
 x )  =  ( * `  ( X `  x )
) )
19 logno1 19979 . . . . . . . 8  |-  -.  (
x  e.  RR+  |->  ( log `  x ) )  e.  O ( 1 )
20 1re 8834 . . . . . . . . . . . 12  |-  1  e.  RR
2120a1i 12 . . . . . . . . . . 11  |-  ( (
ph  /\  ( *  o.  X )  =/=  X
)  ->  1  e.  RR )
22 rpvmasum.l . . . . . . . . . . . . 13  |-  L  =  ( ZRHom `  Z
)
23 rpvmasum.a . . . . . . . . . . . . 13  |-  ( ph  ->  N  e.  NN )
24 rpvmasum2.1 . . . . . . . . . . . . 13  |-  .1.  =  ( 0g `  G )
25 eqid 2286 . . . . . . . . . . . . 13  |-  (Unit `  Z )  =  (Unit `  Z )
2623nnnn0d 10015 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  N  e.  NN0 )
272zncrng 16494 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN0  ->  Z  e. 
CRing )
2826, 27syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  Z  e.  CRing )
29 crngrng 15347 . . . . . . . . . . . . . . 15  |-  ( Z  e.  CRing  ->  Z  e.  Ring )
3028, 29syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  Z  e.  Ring )
31 eqid 2286 . . . . . . . . . . . . . . 15  |-  ( 1r
`  Z )  =  ( 1r `  Z
)
3225, 311unit 15436 . . . . . . . . . . . . . 14  |-  ( Z  e.  Ring  ->  ( 1r
`  Z )  e.  (Unit `  Z )
)
3330, 32syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 1r `  Z
)  e.  (Unit `  Z ) )
34 eqid 2286 . . . . . . . . . . . . 13  |-  ( `' L " { ( 1r `  Z ) } )  =  ( `' L " { ( 1r `  Z ) } )
35 eqidd 2287 . . . . . . . . . . . . 13  |-  ( (
ph  /\  f  e.  W )  ->  ( 1r `  Z )  =  ( 1r `  Z
) )
362, 22, 23, 1, 3, 24, 5, 25, 33, 34, 35rpvmasum2 20657 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  RR+  |->  ( ( ( phi `  N )  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x ) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) ( (Λ `  n
)  /  n ) )  -  ( ( log `  x )  x.  ( 1  -  ( # `  W
) ) ) ) )  e.  O ( 1 ) )
3736adantr 453 . . . . . . . . . . 11  |-  ( (
ph  /\  ( *  o.  X )  =/=  X
)  ->  ( x  e.  RR+  |->  ( ( ( phi `  N )  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x ) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) ( (Λ `  n
)  /  n ) )  -  ( ( log `  x )  x.  ( 1  -  ( # `  W
) ) ) ) )  e.  O ( 1 ) )
3823phicld 12836 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( phi `  N
)  e.  NN )
3938nnnn0d 10015 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( phi `  N
)  e.  NN0 )
4039adantr 453 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( phi `  N )  e.  NN0 )
4140nn0red 10016 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( phi `  N )  e.  RR )
42 fzfid 11031 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 1 ... ( |_ `  x ) )  e. 
Fin )
43 inss1 3392 . . . . . . . . . . . . . . . . 17  |-  ( ( 1 ... ( |_
`  x ) )  i^i  ( `' L " { ( 1r `  Z ) } ) )  C_  ( 1 ... ( |_ `  x ) )
44 ssfi 7080 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 1 ... ( |_ `  x ) )  e.  Fin  /\  (
( 1 ... ( |_ `  x ) )  i^i  ( `' L " { ( 1r `  Z ) } ) )  C_  ( 1 ... ( |_ `  x ) ) )  ->  ( ( 1 ... ( |_ `  x ) )  i^i  ( `' L " { ( 1r `  Z ) } ) )  e.  Fin )
4542, 43, 44sylancl 645 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
1 ... ( |_ `  x ) )  i^i  ( `' L " { ( 1r `  Z ) } ) )  e.  Fin )
4643sseli 3179 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  ( ( 1 ... ( |_ `  x ) )  i^i  ( `' L " { ( 1r `  Z ) } ) )  ->  n  e.  ( 1 ... ( |_ `  x ) ) )
47 elfznn 10815 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
4847adantl 454 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
4946, 48sylan2 462 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) )  ->  n  e.  NN )
50 vmacl 20352 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  NN  ->  (Λ `  n )  e.  RR )
51 nndivre 9778 . . . . . . . . . . . . . . . . . 18  |-  ( ( (Λ `  n )  e.  RR  /\  n  e.  NN )  ->  (
(Λ `  n )  /  n )  e.  RR )
5250, 51mpancom 652 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  NN  ->  (
(Λ `  n )  /  n )  e.  RR )
5349, 52syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) )  ->  ( (Λ `  n
)  /  n )  e.  RR )
5445, 53fsumrecl 12203 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ n  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) ( (Λ `  n )  /  n )  e.  RR )
5541, 54remulcld 8860 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( phi `  N )  x. 
sum_ n  e.  (
( 1 ... ( |_ `  x ) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) ( (Λ `  n
)  /  n ) )  e.  RR )
56 relogcl 19928 . . . . . . . . . . . . . . . 16  |-  ( x  e.  RR+  ->  ( log `  x )  e.  RR )
5756adantl 454 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( log `  x )  e.  RR )
581, 3dchrfi 20490 . . . . . . . . . . . . . . . . . . . . 21  |-  ( N  e.  NN  ->  D  e.  Fin )
5923, 58syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  D  e.  Fin )
60 difss 3306 . . . . . . . . . . . . . . . . . . . . 21  |-  ( D 
\  {  .1.  }
)  C_  D
617, 60sstri 3191 . . . . . . . . . . . . . . . . . . . 20  |-  W  C_  D
62 ssfi 7080 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( D  e.  Fin  /\  W  C_  D )  ->  W  e.  Fin )
6359, 61, 62sylancl 645 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  W  e.  Fin )
64 hashcl 11346 . . . . . . . . . . . . . . . . . . 19  |-  ( W  e.  Fin  ->  ( # `
 W )  e. 
NN0 )
6563, 64syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( # `  W
)  e.  NN0 )
6665nn0red 10016 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( # `  W
)  e.  RR )
67 resubcl 9108 . . . . . . . . . . . . . . . . 17  |-  ( ( 1  e.  RR  /\  ( # `  W )  e.  RR )  -> 
( 1  -  ( # `
 W ) )  e.  RR )
6820, 66, 67sylancr 646 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 1  -  ( # `
 W ) )  e.  RR )
6968adantr 453 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 1  -  ( # `  W
) )  e.  RR )
7057, 69remulcld 8860 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( log `  x )  x.  ( 1  -  ( # `
 W ) ) )  e.  RR )
7155, 70resubcld 9208 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
( phi `  N
)  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) ( (Λ `  n )  /  n ) )  -  ( ( log `  x
)  x.  ( 1  -  ( # `  W
) ) ) )  e.  RR )
7271recnd 8858 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
( phi `  N
)  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) ( (Λ `  n )  /  n ) )  -  ( ( log `  x
)  x.  ( 1  -  ( # `  W
) ) ) )  e.  CC )
7372adantlr 697 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  x  e.  RR+ )  -> 
( ( ( phi `  N )  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x ) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) ( (Λ `  n
)  /  n ) )  -  ( ( log `  x )  x.  ( 1  -  ( # `  W
) ) ) )  e.  CC )
7456adantl 454 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  x  e.  RR+ )  -> 
( log `  x
)  e.  RR )
7574recnd 8858 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  x  e.  RR+ )  -> 
( log `  x
)  e.  CC )
7656ad2antrl 710 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( log `  x
)  e.  RR )
7770ad2ant2r 729 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( log `  x
)  x.  ( 1  -  ( # `  W
) ) )  e.  RR )
7876, 77readdcld 8859 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( log `  x
)  +  ( ( log `  x )  x.  ( 1  -  ( # `  W
) ) ) )  e.  RR )
79 0re 8835 . . . . . . . . . . . . . . 15  |-  0  e.  RR
8079a1i 12 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
0  e.  RR )
8155ad2ant2r 729 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( phi `  N )  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x ) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) ( (Λ `  n
)  /  n ) )  e.  RR )
82 2re 9812 . . . . . . . . . . . . . . . . . 18  |-  2  e.  RR
8382a1i 12 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
2  e.  RR )
8466ad2antrr 708 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( # `  W )  e.  RR )
8583, 84resubcld 9208 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( 2  -  ( # `
 W ) )  e.  RR )
86 log1 19935 . . . . . . . . . . . . . . . . 17  |-  ( log `  1 )  =  0
87 simprr 735 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
1  <_  x )
88 1rp 10355 . . . . . . . . . . . . . . . . . . 19  |-  1  e.  RR+
89 simprl 734 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  x  e.  RR+ )
90 logleb 19953 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1  e.  RR+  /\  x  e.  RR+ )  ->  (
1  <_  x  <->  ( log `  1 )  <_  ( log `  x ) ) )
9188, 89, 90sylancr 646 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( 1  <_  x  <->  ( log `  1 )  <_  ( log `  x
) ) )
9287, 91mpbid 203 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( log `  1
)  <_  ( log `  x ) )
9386, 92syl5eqbrr 4060 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
0  <_  ( log `  x ) )
94 simplr 733 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( *  o.  X
)  =/=  X )
95 eqid 2286 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( inv g `  G )  =  ( inv g `  G )
961, 3, 11, 95dchrinv 20496 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( ( inv g `  G ) `  X
)  =  ( *  o.  X ) )
971dchrabl 20489 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( N  e.  NN  ->  G  e.  Abel )
9823, 97syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  G  e.  Abel )
99 ablgrp 15090 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( G  e.  Abel  ->  G  e. 
Grp )
10098, 99syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  G  e.  Grp )
1013, 95grpinvcl 14523 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( G  e.  Grp  /\  X  e.  D )  ->  ( ( inv g `  G ) `  X
)  e.  D )
102100, 11, 101syl2anc 644 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( ( inv g `  G ) `  X
)  e.  D )
10396, 102eqeltrrd 2361 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( *  o.  X
)  e.  D )
104 eldifsni 3753 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( X  e.  ( D  \  {  .1.  } )  ->  X  =/=  .1.  )
1059, 104syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  X  =/=  .1.  )
1063, 24grpidcl 14506 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( G  e.  Grp  ->  .1.  e.  D )
107100, 106syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ph  ->  .1.  e.  D )
1083, 95, 100, 11, 107grpinv11 14533 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  ( ( ( inv g `  G ) `
 X )  =  ( ( inv g `  G ) `  .1.  ) 
<->  X  =  .1.  )
)
109108necon3bid 2484 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  ( ( ( inv g `  G ) `
 X )  =/=  ( ( inv g `  G ) `  .1.  ) 
<->  X  =/=  .1.  )
)
110105, 109mpbird 225 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( ( inv g `  G ) `  X
)  =/=  ( ( inv g `  G
) `  .1.  )
)
11124, 95grpinvid 14529 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( G  e.  Grp  ->  (
( inv g `  G ) `  .1.  )  =  .1.  )
112100, 111syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( ( inv g `  G ) `  .1.  )  =  .1.  )
113110, 96, 1123netr3d 2475 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( *  o.  X
)  =/=  .1.  )
114 eldifsn 3752 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( *  o.  X )  e.  ( D  \  {  .1.  } )  <->  ( (
*  o.  X )  e.  D  /\  (
*  o.  X )  =/=  .1.  ) )
115103, 113, 114sylanbrc 647 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( *  o.  X
)  e.  ( D 
\  {  .1.  }
) )
116 nnuz 10260 . . . . . . . . . . . . . . . . . . . . . . 23  |-  NN  =  ( ZZ>= `  1 )
117 1z 10050 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  1  e.  ZZ
118117a1i 12 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  1  e.  ZZ )
119 fveq2 5487 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( n  =  m  ->  ( L `  n )  =  ( L `  m ) )
120119fveq2d 5491 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( n  =  m  ->  ( X `  ( L `  n ) )  =  ( X `  ( L `  m )
) )
121 id 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( n  =  m  ->  n  =  m )
122120, 121oveq12d 5839 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( n  =  m  ->  (
( X `  ( L `  n )
)  /  n )  =  ( ( X `
 ( L `  m ) )  /  m ) )
123122fveq2d 5491 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( n  =  m  ->  (
* `  ( ( X `  ( L `  n ) )  /  n ) )  =  ( * `  (
( X `  ( L `  m )
)  /  m ) ) )
124 eqid 2286 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( n  e.  NN  |->  ( * `
 ( ( X `
 ( L `  n ) )  /  n ) ) )  =  ( n  e.  NN  |->  ( * `  ( ( X `  ( L `  n ) )  /  n ) ) )
125 fvex 5501 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( * `
 ( ( X `
 ( L `  m ) )  /  m ) )  e. 
_V
126123, 124, 125fvmpt 5565 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( m  e.  NN  ->  (
( n  e.  NN  |->  ( * `  (
( X `  ( L `  n )
)  /  n ) ) ) `  m
)  =  ( * `
 ( ( X `
 ( L `  m ) )  /  m ) ) )
127126adantl 454 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( * `  ( ( X `  ( L `
 n ) )  /  n ) ) ) `  m )  =  ( * `  ( ( X `  ( L `  m ) )  /  m ) ) )
128 nnre 9750 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( m  e.  NN  ->  m  e.  RR )
129128adantl 454 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (
ph  /\  m  e.  NN )  ->  m  e.  RR )
130129cjred 11707 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  m  e.  NN )  ->  ( * `
 m )  =  m )
131130oveq2d 5837 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( * `  ( X `
 ( L `  m ) ) )  /  ( * `  m ) )  =  ( ( * `  ( X `  ( L `
 m ) ) )  /  m ) )
13212adantr 453 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (
ph  /\  m  e.  NN )  ->  X :
( Base `  Z ) --> CC )
1332, 4, 22znzrhfo 16497 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( N  e.  NN0  ->  L : ZZ -onto-> ( Base `  Z
) )
13426, 133syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ph  ->  L : ZZ -onto-> ( Base `  Z ) )
135 fof 5418 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( L : ZZ -onto-> ( Base `  Z )  ->  L : ZZ --> ( Base `  Z
) )
136134, 135syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ph  ->  L : ZZ --> ( Base `  Z ) )
137 nnz 10042 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( m  e.  NN  ->  m  e.  ZZ )
138 ffvelrn 5626 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( L : ZZ --> ( Base `  Z )  /\  m  e.  ZZ )  ->  ( L `  m )  e.  ( Base `  Z
) )
139136, 137, 138syl2an 465 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (
ph  /\  m  e.  NN )  ->  ( L `
 m )  e.  ( Base `  Z
) )
140 ffvelrn 5626 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( X : ( Base `  Z ) --> CC  /\  ( L `  m )  e.  ( Base `  Z
) )  ->  ( X `  ( L `  m ) )  e.  CC )
141132, 139, 140syl2anc 644 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  m  e.  NN )  ->  ( X `
 ( L `  m ) )  e.  CC )
142 nncn 9751 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( m  e.  NN  ->  m  e.  CC )
143142adantl 454 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  m  e.  NN )  ->  m  e.  CC )
144 nnne0 9775 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( m  e.  NN  ->  m  =/=  0 )
145144adantl 454 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  m  e.  NN )  ->  m  =/=  0 )
146141, 143, 145cjdivd 11704 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  m  e.  NN )  ->  ( * `
 ( ( X `
 ( L `  m ) )  /  m ) )  =  ( ( * `  ( X `  ( L `
 m ) ) )  /  ( * `
 m ) ) )
147 fvco3 5559 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( X : ( Base `  Z ) --> CC  /\  ( L `  m )  e.  ( Base `  Z
) )  ->  (
( *  o.  X
) `  ( L `  m ) )  =  ( * `  ( X `  ( L `  m ) ) ) )
148132, 139, 147syl2anc 644 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( *  o.  X ) `
 ( L `  m ) )  =  ( * `  ( X `  ( L `  m ) ) ) )
149148oveq1d 5836 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( ( *  o.  X
) `  ( L `  m ) )  /  m )  =  ( ( * `  ( X `  ( L `  m ) ) )  /  m ) )
150131, 146, 1493eqtr4d 2328 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  m  e.  NN )  ->  ( * `
 ( ( X `
 ( L `  m ) )  /  m ) )  =  ( ( ( *  o.  X ) `  ( L `  m ) )  /  m ) )
151127, 150eqtrd 2318 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( * `  ( ( X `  ( L `
 n ) )  /  n ) ) ) `  m )  =  ( ( ( *  o.  X ) `
 ( L `  m ) )  /  m ) )
152141cjcld 11677 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  m  e.  NN )  ->  ( * `
 ( X `  ( L `  m ) ) )  e.  CC )
153152, 143, 145divcld 9533 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( * `  ( X `
 ( L `  m ) ) )  /  m )  e.  CC )
154149, 153eqeltrd 2360 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( ( *  o.  X
) `  ( L `  m ) )  /  m )  e.  CC )
155 eqid 2286 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  /  a ) )  =  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) )
1562, 22, 23, 1, 3, 24, 11, 105, 155dchrmusumlema 20638 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  E. t E. c  e.  ( 0 [,)  +oo ) (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  / 
y ) ) )
157 simprrl 742 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( (
ph  /\  ( c  e.  ( 0 [,)  +oo )  /\  (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  / 
y ) ) ) )  ->  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t )
1588adantr 453 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( (
ph  /\  ( c  e.  ( 0 [,)  +oo )  /\  (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  / 
y ) ) ) )  ->  X  e.  W )
15923adantr 453 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( (
ph  /\  ( c  e.  ( 0 [,)  +oo )  /\  (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  / 
y ) ) ) )  ->  N  e.  NN )
16011adantr 453 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( (
ph  /\  ( c  e.  ( 0 [,)  +oo )  /\  (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  / 
y ) ) ) )  ->  X  e.  D )
161105adantr 453 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( (
ph  /\  ( c  e.  ( 0 [,)  +oo )  /\  (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  / 
y ) ) ) )  ->  X  =/=  .1.  )
162 simprl 734 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( (
ph  /\  ( c  e.  ( 0 [,)  +oo )  /\  (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  / 
y ) ) ) )  ->  c  e.  ( 0 [,)  +oo ) )
163 simprrr 743 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( (
ph  /\  ( c  e.  ( 0 [,)  +oo )  /\  (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  / 
y ) ) ) )  ->  A. y  e.  ( 1 [,)  +oo ) ( abs `  (
(  seq  1 (  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  /  a ) ) ) `  ( |_
`  y ) )  -  t ) )  <_  ( c  / 
y ) )
1642, 22, 159, 1, 3, 24, 160, 161, 155, 162, 157, 163, 5dchrvmaeq0 20649 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( (
ph  /\  ( c  e.  ( 0 [,)  +oo )  /\  (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  / 
y ) ) ) )  ->  ( X  e.  W  <->  t  =  0 ) )
165158, 164mpbid 203 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( (
ph  /\  ( c  e.  ( 0 [,)  +oo )  /\  (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  / 
y ) ) ) )  ->  t  = 
0 )
166157, 165breqtrd 4050 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( (
ph  /\  ( c  e.  ( 0 [,)  +oo )  /\  (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  / 
y ) ) ) )  ->  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  0 )
167166expr 600 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( (
ph  /\  c  e.  ( 0 [,)  +oo ) )  ->  (
(  seq  1 (  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  / 
y ) )  ->  seq  1 (  +  , 
( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  a ) ) )  ~~>  0 ) )
168167rexlimdva 2670 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ph  ->  ( E. c  e.  ( 0 [,)  +oo ) (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  / 
y ) )  ->  seq  1 (  +  , 
( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  a ) ) )  ~~>  0 ) )
169168exlimdv 1667 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  ( E. t E. c  e.  ( 0 [,)  +oo ) (  seq  1 (  +  , 
( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  / 
y ) )  ->  seq  1 (  +  , 
( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  a ) ) )  ~~>  0 ) )
170156, 169mpd 16 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  seq  1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) )  ~~>  0 )
171 seqex 11044 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  seq  1
(  +  ,  ( n  e.  NN  |->  ( * `  ( ( X `  ( L `
 n ) )  /  n ) ) ) )  e.  _V
172171a1i 12 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  seq  1 (  +  ,  ( n  e.  NN  |->  ( * `  ( ( X `  ( L `  n ) )  /  n ) ) ) )  e. 
_V )
173 fveq2 5487 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( a  =  m  ->  ( L `  a )  =  ( L `  m ) )
174173fveq2d 5491 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( a  =  m  ->  ( X `  ( L `  a ) )  =  ( X `  ( L `  m )
) )
175 id 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( a  =  m  ->  a  =  m )
176174, 175oveq12d 5839 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( a  =  m  ->  (
( X `  ( L `  a )
)  /  a )  =  ( ( X `
 ( L `  m ) )  /  m ) )
177 ovex 5846 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( X `  ( L `
 m ) )  /  m )  e. 
_V
178176, 155, 177fvmpt 5565 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( m  e.  NN  ->  (
( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  a ) ) `  m )  =  ( ( X `
 ( L `  m ) )  /  m ) )
179178adantl 454 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) `  m )  =  ( ( X `
 ( L `  m ) )  /  m ) )
180141, 143, 145divcld 9533 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( X `  ( L `
 m ) )  /  m )  e.  CC )
181179, 180eqeltrd 2360 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) `  m )  e.  CC )
182116, 118, 181serf 11070 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  seq  1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) : NN --> CC )
183 ffvelrn 5626 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (  seq  1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) : NN --> CC  /\  k  e.  NN )  ->  (  seq  1 (  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  /  a ) ) ) `  k )  e.  CC )
184182, 183sylan 459 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  k  e.  NN )  ->  (  seq  1 (  +  , 
( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  a ) ) ) `  k
)  e.  CC )
185 fzfid 11031 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (
ph  /\  k  e.  NN )  ->  ( 1 ... k )  e. 
Fin )
186 simpl 445 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( (
ph  /\  k  e.  NN )  ->  ph )
187 elfznn 10815 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( m  e.  ( 1 ... k )  ->  m  e.  NN )
188186, 187, 180syl2an 465 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ph  /\  k  e.  NN )  /\  m  e.  ( 1 ... k
) )  ->  (
( X `  ( L `  m )
)  /  m )  e.  CC )
189185, 188fsumcj 12264 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  k  e.  NN )  ->  ( * `
 sum_ m  e.  ( 1 ... k ) ( ( X `  ( L `  m ) )  /  m ) )  =  sum_ m  e.  ( 1 ... k
) ( * `  ( ( X `  ( L `  m ) )  /  m ) ) )
190186, 187, 179syl2an 465 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ph  /\  k  e.  NN )  /\  m  e.  ( 1 ... k
) )  ->  (
( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  a ) ) `  m )  =  ( ( X `
 ( L `  m ) )  /  m ) )
191 simpr 449 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  NN )
192191, 116syl6eleq 2376 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  ( ZZ>= `  1 )
)
193190, 192, 188fsumser 12199 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (
ph  /\  k  e.  NN )  ->  sum_ m  e.  ( 1 ... k
) ( ( X `
 ( L `  m ) )  /  m )  =  (  seq  1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 k ) )
194193fveq2d 5491 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  k  e.  NN )  ->  ( * `
 sum_ m  e.  ( 1 ... k ) ( ( X `  ( L `  m ) )  /  m ) )  =  ( * `
 (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  k
) ) )
195186, 187, 127syl2an 465 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ph  /\  k  e.  NN )  /\  m  e.  ( 1 ... k
) )  ->  (
( n  e.  NN  |->  ( * `  (
( X `  ( L `  n )
)  /  n ) ) ) `  m
)  =  ( * `
 ( ( X `
 ( L `  m ) )  /  m ) ) )
196180cjcld 11677 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( (
ph  /\  m  e.  NN )  ->  ( * `
 ( ( X `
 ( L `  m ) )  /  m ) )  e.  CC )
197186, 187, 196syl2an 465 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ph  /\  k  e.  NN )  /\  m  e.  ( 1 ... k
) )  ->  (
* `  ( ( X `  ( L `  m ) )  /  m ) )  e.  CC )
198195, 192, 197fsumser 12199 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  k  e.  NN )  ->  sum_ m  e.  ( 1 ... k
) ( * `  ( ( X `  ( L `  m ) )  /  m ) )  =  (  seq  1 (  +  , 
( n  e.  NN  |->  ( * `  (
( X `  ( L `  n )
)  /  n ) ) ) ) `  k ) )
199189, 194, 1983eqtr3rd 2327 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  k  e.  NN )  ->  (  seq  1 (  +  , 
( n  e.  NN  |->  ( * `  (
( X `  ( L `  n )
)  /  n ) ) ) ) `  k )  =  ( * `  (  seq  1 (  +  , 
( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  a ) ) ) `  k
) ) )
200116, 170, 172, 118, 184, 199climcj 12074 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  seq  1 (  +  ,  ( n  e.  NN  |->  ( * `  ( ( X `  ( L `  n ) )  /  n ) ) ) )  ~~>  ( * `
 0 ) )
201 cj0 11639 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( * `
 0 )  =  0
202200, 201syl6breq 4065 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  seq  1 (  +  ,  ( n  e.  NN  |->  ( * `  ( ( X `  ( L `  n ) )  /  n ) ) ) )  ~~>  0 )
203116, 118, 151, 154, 202isumclim 12216 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  -> 
sum_ m  e.  NN  ( ( ( *  o.  X ) `  ( L `  m ) )  /  m )  =  0 )
204 fveq1 5486 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( y  =  ( *  o.  X )  ->  (
y `  ( L `  m ) )  =  ( ( *  o.  X ) `  ( L `  m )
) )
205204oveq1d 5836 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( y  =  ( *  o.  X )  ->  (
( y `  ( L `  m )
)  /  m )  =  ( ( ( *  o.  X ) `
 ( L `  m ) )  /  m ) )
206205sumeq2sdv 12173 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( y  =  ( *  o.  X )  ->  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  sum_ m  e.  NN  ( ( ( *  o.  X
) `  ( L `  m ) )  /  m ) )
207206eqeq1d 2294 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( y  =  ( *  o.  X )  ->  ( sum_ m  e.  NN  (
( y `  ( L `  m )
)  /  m )  =  0  <->  sum_ m  e.  NN  ( ( ( *  o.  X ) `
 ( L `  m ) )  /  m )  =  0 ) )
208207, 5elrab2 2928 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( *  o.  X )  e.  W  <->  ( (
*  o.  X )  e.  ( D  \  {  .1.  } )  /\  sum_
m  e.  NN  (
( ( *  o.  X ) `  ( L `  m )
)  /  m )  =  0 ) )
209115, 203, 208sylanbrc 647 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( *  o.  X
)  e.  W )
210209ad2antrr 708 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( *  o.  X
)  e.  W )
2118ad2antrr 708 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  X  e.  W )
212 hashprg 11364 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( *  o.  X
)  e.  W  /\  X  e.  W )  ->  ( ( *  o.  X )  =/=  X  <->  (
# `  { (
*  o.  X ) ,  X } )  =  2 ) )
213210, 211, 212syl2anc 644 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( *  o.  X )  =/=  X  <->  (
# `  { (
*  o.  X ) ,  X } )  =  2 ) )
21494, 213mpbid 203 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( # `  { ( *  o.  X ) ,  X } )  =  2 )
21563ad2antrr 708 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  W  e.  Fin )
216 prssi 3774 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( *  o.  X
)  e.  W  /\  X  e.  W )  ->  { ( *  o.  X ) ,  X }  C_  W )
217210, 211, 216syl2anc 644 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  { ( *  o.  X ) ,  X }  C_  W )
218 ssdomg 6904 . . . . . . . . . . . . . . . . . . . 20  |-  ( W  e.  Fin  ->  ( { ( *  o.  X ) ,  X }  C_  W  ->  { ( *  o.  X ) ,  X }  ~<_  W ) )
219215, 217, 218sylc 58 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  { ( *  o.  X ) ,  X }  ~<_  W )
220 hashdomi 11358 . . . . . . . . . . . . . . . . . . 19  |-  ( { ( *  o.  X
) ,  X }  ~<_  W  ->  ( # `  {
( *  o.  X
) ,  X }
)  <_  ( # `  W
) )
221219, 220syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( # `  { ( *  o.  X ) ,  X } )  <_  ( # `  W
) )
222214, 221eqbrtrrd 4048 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
2  <_  ( # `  W
) )
223 suble0 9285 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2  e.  RR  /\  ( # `  W )  e.  RR )  -> 
( ( 2  -  ( # `  W
) )  <_  0  <->  2  <_  ( # `  W
) ) )
22482, 84, 223sylancr 646 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( 2  -  ( # `  W
) )  <_  0  <->  2  <_  ( # `  W
) ) )
225222, 224mpbird 225 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( 2  -  ( # `
 W ) )  <_  0 )
22685, 80, 76, 93, 225lemul2ad 9694 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( log `  x
)  x.  ( 2  -  ( # `  W
) ) )  <_ 
( ( log `  x
)  x.  0 ) )
227 df-2 9801 . . . . . . . . . . . . . . . . . . 19  |-  2  =  ( 1  +  1 )
228227oveq1i 5831 . . . . . . . . . . . . . . . . . 18  |-  ( 2  -  ( # `  W
) )  =  ( ( 1  +  1 )  -  ( # `  W ) )
229 ax-1cn 8792 . . . . . . . . . . . . . . . . . . . 20  |-  1  e.  CC
230229a1i 12 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
1  e.  CC )
23184recnd 8858 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( # `  W )  e.  CC )
232230, 230, 231addsubassd 9174 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( 1  +  1 )  -  ( # `
 W ) )  =  ( 1  +  ( 1  -  ( # `
 W ) ) ) )
233228, 232syl5eq 2330 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( 2  -  ( # `
 W ) )  =  ( 1  +  ( 1  -  ( # `
 W ) ) ) )
234233oveq2d 5837 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( log `  x
)  x.  ( 2  -  ( # `  W
) ) )  =  ( ( log `  x
)  x.  ( 1  +  ( 1  -  ( # `  W
) ) ) ) )
23575adantrr 699 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( log `  x
)  e.  CC )
23668ad2antrr 708 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( 1  -  ( # `
 W ) )  e.  RR )
237236recnd 8858 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( 1  -  ( # `
 W ) )  e.  CC )
238235, 230, 237adddid 8856 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( log `  x
)  x.  ( 1  +  ( 1  -  ( # `  W
) ) ) )  =  ( ( ( log `  x )  x.  1 )  +  ( ( log `  x
)  x.  ( 1  -  ( # `  W
) ) ) ) )
239235mulid1d 8849 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( log `  x
)  x.  1 )  =  ( log `  x
) )
240239oveq1d 5836 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( ( log `  x )  x.  1 )  +  ( ( log `  x )  x.  ( 1  -  ( # `  W
) ) ) )  =  ( ( log `  x )  +  ( ( log `  x
)  x.  ( 1  -  ( # `  W
) ) ) ) )
241234, 238, 2403eqtrd 2322 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( log `  x
)  x.  ( 2  -  ( # `  W
) ) )  =  ( ( log `  x
)  +  ( ( log `  x )  x.  ( 1  -  ( # `  W
) ) ) ) )
242235mul01d 9008 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( log `  x
)  x.  0 )  =  0 )
243226, 241, 2423brtr3d 4055 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( log `  x
)  +  ( ( log `  x )  x.  ( 1  -  ( # `  W
) ) ) )  <_  0 )
24438nnred 9758 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( phi `  N
)  e.  RR )
245244ad2antrr 708 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( phi `  N
)  e.  RR )
24654ad2ant2r 729 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ n  e.  ( ( 1 ... ( |_
`  x ) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) ( (Λ `  n
)  /  n )  e.  RR )
24739ad2antrr 708 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( phi `  N
)  e.  NN0 )
248247nn0ge0d 10018 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
0  <_  ( phi `  N ) )
24949, 50syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) )  ->  (Λ `  n )  e.  RR )
250 vmage0 20355 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  NN  ->  0  <_  (Λ `  n )
)
25149, 250syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) )  ->  0  <_  (Λ `  n ) )
25249nnred 9758 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) )  ->  n  e.  RR )
25349nngt0d 9786 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) )  ->  0  <  n
)
254 divge0 9622 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( (Λ `  n
)  e.  RR  /\  0  <_  (Λ `  n )
)  /\  ( n  e.  RR  /\  0  < 
n ) )  -> 
0  <_  ( (Λ `  n )  /  n
) )
255249, 251, 252, 253, 254syl22anc 1185 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) )  ->  0  <_  (
(Λ `  n )  /  n ) )
25645, 53, 255fsumge0 12249 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  RR+ )  ->  0  <_  sum_
n  e.  ( ( 1 ... ( |_
`  x ) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) ( (Λ `  n
)  /  n ) )
257256ad2ant2r 729 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
0  <_  sum_ n  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) ( (Λ `  n )  /  n ) )
258245, 246, 248, 257mulge0d 9346 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
0  <_  ( ( phi `  N )  x. 
sum_ n  e.  (
( 1 ... ( |_ `  x ) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) ( (Λ `  n
)  /  n ) ) )
25978, 80, 81, 243, 258letrd 8970 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( log `  x
)  +  ( ( log `  x )  x.  ( 1  -  ( # `  W
) ) ) )  <_  ( ( phi `  N )  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x ) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) ( (Λ `  n
)  /  n ) ) )
260 leaddsub 9247 . . . . . . . . . . . . . 14  |-  ( ( ( log `  x
)  e.  RR  /\  ( ( log `  x
)  x.  ( 1  -  ( # `  W
) ) )  e.  RR  /\  ( ( phi `  N )  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x ) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) ( (Λ `  n
)  /  n ) )  e.  RR )  ->  ( ( ( log `  x )  +  ( ( log `  x )  x.  (
1  -  ( # `  W ) ) ) )  <_  ( ( phi `  N )  x. 
sum_ n  e.  (
( 1 ... ( |_ `  x ) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) ( (Λ `  n
)  /  n ) )  <->  ( log `  x
)  <_  ( (
( phi `  N
)  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) ( (Λ `  n )  /  n ) )  -  ( ( log `  x
)  x.  ( 1  -  ( # `  W
) ) ) ) ) )
26176, 77, 81, 260syl3anc 1184 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( ( log `  x )  +  ( ( log `  x
)  x.  ( 1  -  ( # `  W
) ) ) )  <_  ( ( phi `  N )  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x ) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) ( (Λ `  n
)  /  n ) )  <->  ( log `  x
)  <_  ( (
( phi `  N
)  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) ( (Λ `  n )  /  n ) )  -  ( ( log `  x
)  x.  ( 1  -  ( # `  W
) ) ) ) ) )
262259, 261mpbid 203 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( log `  x
)  <_  ( (
( phi `  N
)  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) ( (Λ `  n )  /  n ) )  -  ( ( log `  x
)  x.  ( 1  -  ( # `  W
) ) ) ) )
26376, 93absidd 11901 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  ( log `  x ) )  =  ( log `  x
) )
26471ad2ant2r 729 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( ( phi `  N )  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x ) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) ( (Λ `  n
)  /  n ) )  -  ( ( log `  x )  x.  ( 1  -  ( # `  W
) ) ) )  e.  RR )
26580, 76, 264, 93, 262letrd 8970 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
0  <_  ( (
( phi `  N
)  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) ( (Λ `  n )  /  n ) )  -  ( ( log `  x
)  x.  ( 1  -  ( # `  W
) ) ) ) )
266264, 265absidd 11901 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  (
( ( phi `  N )  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x ) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) ( (Λ `  n
)  /  n ) )  -  ( ( log `  x )  x.  ( 1  -  ( # `  W
) ) ) ) )  =  ( ( ( phi `  N
)  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x
) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) ( (Λ `  n )  /  n ) )  -  ( ( log `  x
)  x.  ( 1  -  ( # `  W
) ) ) ) )
267262, 263, 2663brtr4d 4056 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
*  o.  X )  =/=  X )  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  ( log `  x ) )  <_  ( abs `  (
( ( phi `  N )  x.  sum_ n  e.  ( ( 1 ... ( |_ `  x ) )  i^i  ( `' L " { ( 1r `  Z ) } ) ) ( (Λ `  n
)  /  n ) )  -  ( ( log `  x )  x.  ( 1  -  ( # `  W
) ) ) ) ) )
26821, 37, 73, 75, 267o1le 12122 . . . . . . . . . 10  |-  ( (
ph  /\  ( *  o.  X )  =/=  X
)  ->  ( x  e.  RR+  |->  ( log `  x
) )  e.  O
( 1 ) )
269268ex 425 . . . . . . . . 9  |-  ( ph  ->  ( ( *  o.  X )  =/=  X  ->  ( x  e.  RR+  |->  ( log `  x ) )  e.  O ( 1 ) ) )
270269necon1bd 2517 . . . . . . . 8  |-  ( ph  ->  ( -.  ( x  e.  RR+  |->  ( log `  x ) )  e.  O ( 1 )  ->  ( *  o.  X )  =  X ) )
27119, 270mpi 18 . . . . . . 7  |-  ( ph  ->  ( *  o.  X
)  =  X )
272271adantr 453 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  Z )
)  ->  ( *  o.  X )  =  X )
273272fveq1d 5489 . . . . 5  |-  ( (
ph  /\  x  e.  ( Base `  Z )
)  ->  ( (
*  o.  X ) `
 x )  =  ( X `  x
) )
27418, 273eqtr3d 2320 . . . 4  |-  ( (
ph  /\  x  e.  ( Base `  Z )
)  ->  ( * `  ( X `  x
) )  =  ( X `  x ) )
27516, 274cjrebd 11683 . . 3  |-  ( (
ph  /\  x  e.  ( Base `  Z )
)  ->  ( X `  x )  e.  RR )
276275ralrimiva 2629 . 2  |-  ( ph  ->  A. x  e.  (
Base `  Z )
( X `  x
)  e.  RR )
277 ffnfv 5648 . 2  |-  ( X : ( Base `  Z
) --> RR  <->  ( X  Fn  ( Base `  Z
)  /\  A. x  e.  ( Base `  Z
) ( X `  x )  e.  RR ) )
27814, 276, 277sylanbrc 647 1  |-  ( ph  ->  X : ( Base `  Z ) --> RR )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360   E.wex 1530    = wceq 1625    e. wcel 1687    =/= wne 2449   A.wral 2546   E.wrex 2547   {crab 2550   _Vcvv 2791    \ cdif 3152    i^i cin 3154    C_ wss 3155   {csn 3643   {cpr 3644   class class class wbr 4026    e. cmpt 4080   `'ccnv 4689   "cima 4693    o. ccom 4694    Fn wfn 5218   -->wf 5219   -onto->wfo 5221   ` cfv 5223  (class class class)co 5821    ~<_ cdom 6858   Fincfn 6860   CCcc 8732   RRcr 8733   0cc0 8734   1c1 8735    + caddc 8737    x. cmul 8739    +oocpnf 8861    < clt 8864    <_ cle 8865    - cmin 9034    / cdiv 9420   NNcn 9743   2c2 9792   NN0cn0 9962   ZZcz 10021   ZZ>=cuz 10227   RR+crp 10351   [,)cico 10654   ...cfz 10778   |_cfl 10920    seq cseq 11042   #chash 11333   *ccj 11577   abscabs 11715    ~~> cli 11954   O (
1 )co1 11956   sum_csu 12154   phicphi 12828   Basecbs 13144   0gc0g 13396   Grpcgrp 14358   inv gcminusg 14359   Abelcabel 15086   Ringcrg 15333   CRingccrg 15334   1rcur 15335  Unitcui 15417   ZRHomczrh 16447  ℤ/nczn 16450   logclog 19908  Λcvma 20325  DChrcdchr 20467
This theorem is referenced by:  dchrisum0  20665
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1638  ax-8 1646  ax-13 1689  ax-14 1691  ax-6 1706  ax-7 1711  ax-11 1718  ax-12 1870  ax-ext 2267  ax-rep 4134  ax-sep 4144  ax-nul 4152  ax-pow 4189  ax-pr 4215  ax-un 4513  ax-inf2 7339  ax-cnex 8790  ax-resscn 8791  ax-1cn 8792  ax-icn 8793  ax-addcl 8794  ax-addrcl 8795  ax-mulcl 8796  ax-mulrcl 8797  ax-mulcom 8798  ax-addass 8799  ax-mulass 8800  ax-distr 8801  ax-i2m1 8802  ax-1ne0 8803  ax-1rid 8804  ax-rnegex 8805  ax-rrecex 8806  ax-cnre 8807  ax-pre-lttri 8808  ax-pre-lttrn 8809  ax-pre-ltadd 8810  ax-pre-mulgt0 8811  ax-pre-sup 8812  ax-addf 8813  ax-mulf 8814
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-fal 1313  df-ex 1531  df-nf 1534  df-sb 1633  df-eu 2150  df-mo 2151  df-clab 2273  df-cleq 2279  df-clel 2282  df-nfc 2411  df-ne 2451  df-nel 2452  df-ral 2551  df-rex 2552  df-reu 2553  df-rmo 2554  df-rab 2555  df-v 2793  df-sbc 2995  df-csb 3085  df-dif 3158  df-un 3160  df-in 3162  df-ss 3169  df-pss 3171  df-nul 3459  df-if 3569  df-pw 3630  df-sn 3649  df-pr 3650  df-tp 3651  df-op 3652  df-uni 3831  df-int 3866  df-iun 3910  df-iin 3911  df-disj 3997  df-br 4027  df-opab 4081  df-mpt 4082  df-tr 4117  df-eprel 4306  df-id 4310  df-po 4315  df-so 4316  df-fr 4353  df-se 4354  df-we 4355  df-ord 4396  df-on 4397  df-lim 4398  df-suc 4399  df-om 4658  df-xp 4696  df-rel 4697  df-cnv 4698  df-co 4699  df-dm 4700  df-rn 4701  df-res 4702  df-ima 4703  df-fun 5225  df-fn 5226  df-f 5227  df-f1 5228  df-fo 5229  df-f1o 5230  df-fv 5231  df-isom 5232  df-ov 5824  df-oprab 5825  df-mpt2 5826  df-of 6041  df-1st 6085  df-2nd 6086  df-tpos 6197  df-rpss 6240  df-iota 6254  df-riota 6301  df-recs 6385  df-rdg 6420  df-1o 6476  df-2o 6477  df-oadd 6480  df-omul 6481  df-er 6657  df-ec 6659  df-qs 6663  df-map 6771  df-pm 6772  df-ixp 6815  df-en 6861  df-dom 6862  df-sdom 6863  df-fin 6864  df-fi 7162  df-sup 7191  df-oi 7222  df-card 7569  df-acn 7572  df-cda 7791  df-pnf 8866  df-mnf 8867  df-xr 8868  df-ltxr 8869  df-le 8870  df-sub 9036  df-neg 9037  df-div 9421  df-nn 9744  df-2 9801  df-3 9802  df-4 9803  df-5 9804  df-6 9805  df-7 9806  df-8 9807  df-9 9808  df-10 9809  df-n0 9963  df-z 10022  df-dec 10122  df-uz 10228  df-q 10314  df-rp 10352  df-xneg 10449  df-xadd 10450  df-xmul 10451  df-ioo 10656  df-ioc 10657  df-ico 10658  df-icc 10659  df-fz 10779  df-fzo 10867  df-fl 10921  df-mod 10970  df-seq 11043  df-exp 11101  df-fac 11285  df-bc 11312  df-hash 11334  df-word 11405  df-concat 11406  df-s1 11407  df-shft 11558  df-cj 11580  df-re 11581  df-im 11582  df-sqr 11716  df-abs 11717  df-limsup 11941  df-clim 11958  df-rlim 11959  df-o1 11960  df-lo1 11961  df-sum 12155  df-ef 12345  df-e 12346  df-sin 12347  df-cos 12348  df-pi 12350  df-dvds 12528  df-gcd 12682  df-prm 12755  df-phi 12830  df-pc 12886  df-struct 13146  df-ndx 13147  df-slot 13148  df-base 13149  df-sets 13150  df-ress 13151  df-plusg 13217  df-mulr 13218  df-starv 13219  df-sca 13220  df-vsca 13221  df-tset 13223  df-ple 13224  df-ds 13226  df-hom 13228  df-cco 13229  df-rest 13323  df-topn 13324  df-topgen 13340  df-pt 13341  df-prds 13344  df-xrs 13399  df-0g 13400  df-gsum 13401  df-qtop 13406  df-imas 13407  df-divs 13408  df-xps 13409  df-mre 13484  df-mrc 13485  df-acs 13487  df-mnd 14363  df-mhm 14411  df-submnd 14412  df-grp 14485  df-minusg 14486  df-sbg 14487  df-mulg 14488  df-subg 14614  df-nsg 14615  df-eqg 14616  df-ghm 14677  df-gim 14719  df-ga 14740  df-cntz 14789  df-oppg 14815  df-od 14840  df-gex 14841  df-pgp 14842  df-lsm 14943  df-pj1 14944  df-cmn 15087  df-abl 15088  df-cyg 15161  df-dprd 15229  df-dpj 15230  df-mgp 15322  df-rng 15336  df-cring 15337  df-ur 15338  df-oppr 15401  df-dvdsr 15419  df-unit 15420  df-invr 15450  df-dvr 15461  df-rnghom 15492  df-drng 15510  df-subrg 15539  df-lmod 15625  df-lss 15686  df-lsp 15725  df-sra 15921  df-rgmod 15922  df-lidl 15923  df-rsp 15924  df-2idl 15980  df-xmet 16369  df-met 16370  df-bl 16371  df-mopn 16372  df-cnfld 16374  df-zrh 16451  df-zn 16454  df-top 16632  df-bases 16634  df-topon 16635  df-topsp 16636  df-cld 16752  df-ntr 16753  df-cls 16754  df-nei 16831  df-lp 16864  df-perf 16865  df-cn 16953  df-cnp 16954  df-haus 17039  df-cmp 17110  df-tx 17253  df-hmeo 17442  df-fbas 17516  df-fg 17517  df-fil 17537  df-fm 17629  df-flim 17630  df-flf 17631  df-xms 17881  df-ms 17882  df-tms 17883  df-cncf 18378  df-0p 19021  df-limc 19212  df-dv 19213  df-ply 19566  df-idp 19567  df-coe 19568  df-dgr 19569  df-quot 19667  df-log 19910  df-cxp 19911  df-em 20283  df-cht 20330  df-vma 20331  df-chp 20332  df-ppi 20333  df-mu 20334  df-dchr 20468
  Copyright terms: Public domain W3C validator