MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrmusum Structured version   Unicode version

Theorem dchrmusum 21210
Description: The sum of the Möbius function multiplied by a non-principal Dirichlet character, divided by  n, is bounded. Equation 9.4.16 of [Shapiro], p. 379. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
dchrmusum.g  |-  G  =  (DChr `  N )
dchrmusum.d  |-  D  =  ( Base `  G
)
dchrmusum.1  |-  .1.  =  ( 0g `  G )
dchrmusum.b  |-  ( ph  ->  X  e.  D )
dchrmusum.n1  |-  ( ph  ->  X  =/=  .1.  )
Assertion
Ref Expression
dchrmusum  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  n )
)  x.  ( ( mmu `  n )  /  n ) ) )  e.  O ( 1 ) )
Distinct variable groups:    x, n,  .1.    n, N, x    ph, n, x    n, Z, x    D, n, x    n, L, x   
n, X, x
Allowed substitution hints:    G( x, n)

Proof of Theorem dchrmusum
Dummy variables  y 
c  t  a are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpvmasum.z . . 3  |-  Z  =  (ℤ/n `  N )
2 rpvmasum.l . . 3  |-  L  =  ( ZRHom `  Z
)
3 rpvmasum.a . . 3  |-  ( ph  ->  N  e.  NN )
4 dchrmusum.g . . 3  |-  G  =  (DChr `  N )
5 dchrmusum.d . . 3  |-  D  =  ( Base `  G
)
6 dchrmusum.1 . . 3  |-  .1.  =  ( 0g `  G )
7 dchrmusum.b . . 3  |-  ( ph  ->  X  e.  D )
8 dchrmusum.n1 . . 3  |-  ( ph  ->  X  =/=  .1.  )
9 eqid 2435 . . 3  |-  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  /  a ) )  =  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) )
101, 2, 3, 4, 5, 6, 7, 8, 9dchrmusumlema 21179 . 2  |-  ( ph  ->  E. t E. c  e.  ( 0 [,)  +oo ) (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  / 
y ) ) )
113adantr 452 . . . . 5  |-  ( (
ph  /\  ( c  e.  ( 0 [,)  +oo )  /\  (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  / 
y ) ) ) )  ->  N  e.  NN )
127adantr 452 . . . . 5  |-  ( (
ph  /\  ( c  e.  ( 0 [,)  +oo )  /\  (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  / 
y ) ) ) )  ->  X  e.  D )
138adantr 452 . . . . 5  |-  ( (
ph  /\  ( c  e.  ( 0 [,)  +oo )  /\  (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  / 
y ) ) ) )  ->  X  =/=  .1.  )
14 simprl 733 . . . . 5  |-  ( (
ph  /\  ( c  e.  ( 0 [,)  +oo )  /\  (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  / 
y ) ) ) )  ->  c  e.  ( 0 [,)  +oo ) )
15 simprrl 741 . . . . 5  |-  ( (
ph  /\  ( c  e.  ( 0 [,)  +oo )  /\  (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  / 
y ) ) ) )  ->  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t )
16 simprrr 742 . . . . 5  |-  ( (
ph  /\  ( c  e.  ( 0 [,)  +oo )  /\  (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  / 
y ) ) ) )  ->  A. y  e.  ( 1 [,)  +oo ) ( abs `  (
(  seq  1 (  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  /  a ) ) ) `  ( |_
`  y ) )  -  t ) )  <_  ( c  / 
y ) )
171, 2, 11, 4, 5, 6, 12, 13, 9, 14, 15, 16dchrmusumlem 21208 . . . 4  |-  ( (
ph  /\  ( c  e.  ( 0 [,)  +oo )  /\  (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  / 
y ) ) ) )  ->  ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  n ) )  x.  ( ( mmu `  n )  /  n ) ) )  e.  O ( 1 ) )
1817rexlimdvaa 2823 . . 3  |-  ( ph  ->  ( E. c  e.  ( 0 [,)  +oo ) (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  / 
y ) )  -> 
( x  e.  RR+  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  n )
)  x.  ( ( mmu `  n )  /  n ) ) )  e.  O ( 1 ) ) )
1918exlimdv 1646 . 2  |-  ( ph  ->  ( E. t E. c  e.  ( 0 [,)  +oo ) (  seq  1 (  +  , 
( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  / 
y ) )  -> 
( x  e.  RR+  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  n )
)  x.  ( ( mmu `  n )  /  n ) ) )  e.  O ( 1 ) ) )
2010, 19mpd 15 1  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  n )
)  x.  ( ( mmu `  n )  /  n ) ) )  e.  O ( 1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359   E.wex 1550    = wceq 1652    e. wcel 1725    =/= wne 2598   A.wral 2697   E.wrex 2698   class class class wbr 4204    e. cmpt 4258   ` cfv 5446  (class class class)co 6073   0cc0 8982   1c1 8983    + caddc 8985    x. cmul 8987    +oocpnf 9109    <_ cle 9113    - cmin 9283    / cdiv 9669   NNcn 9992   RR+crp 10604   [,)cico 10910   ...cfz 11035   |_cfl 11193    seq cseq 11315   abscabs 12031    ~~> cli 12270   O (
1 )co1 12272   sum_csu 12471   Basecbs 13461   0gc0g 13715   ZRHomczrh 16770  ℤ/nczn 16773   mmucmu 20869  DChrcdchr 21008
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060  ax-addf 9061  ax-mulf 9062
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-fal 1329  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-disj 4175  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-of 6297  df-1st 6341  df-2nd 6342  df-tpos 6471  df-rpss 6514  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-oadd 6720  df-omul 6721  df-er 6897  df-ec 6899  df-qs 6903  df-map 7012  df-pm 7013  df-ixp 7056  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-fi 7408  df-sup 7438  df-oi 7471  df-card 7818  df-acn 7821  df-cda 8040  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-4 10052  df-5 10053  df-6 10054  df-7 10055  df-8 10056  df-9 10057  df-10 10058  df-n0 10214  df-z 10275  df-dec 10375  df-uz 10481  df-q 10567  df-rp 10605  df-xneg 10702  df-xadd 10703  df-xmul 10704  df-ioo 10912  df-ioc 10913  df-ico 10914  df-icc 10915  df-fz 11036  df-fzo 11128  df-fl 11194  df-mod 11243  df-seq 11316  df-exp 11375  df-fac 11559  df-bc 11586  df-hash 11611  df-word 11715  df-concat 11716  df-s1 11717  df-shft 11874  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-limsup 12257  df-clim 12274  df-rlim 12275  df-o1 12276  df-lo1 12277  df-sum 12472  df-ef 12662  df-e 12663  df-sin 12664  df-cos 12665  df-pi 12667  df-dvds 12845  df-gcd 12999  df-prm 13072  df-numer 13119  df-denom 13120  df-phi 13147  df-pc 13203  df-struct 13463  df-ndx 13464  df-slot 13465  df-base 13466  df-sets 13467  df-ress 13468  df-plusg 13534  df-mulr 13535  df-starv 13536  df-sca 13537  df-vsca 13538  df-tset 13540  df-ple 13541  df-ds 13543  df-unif 13544  df-hom 13545  df-cco 13546  df-rest 13642  df-topn 13643  df-topgen 13659  df-pt 13660  df-prds 13663  df-xrs 13718  df-0g 13719  df-gsum 13720  df-qtop 13725  df-imas 13726  df-divs 13727  df-xps 13728  df-mre 13803  df-mrc 13804  df-acs 13806  df-mnd 14682  df-mhm 14730  df-submnd 14731  df-grp 14804  df-minusg 14805  df-sbg 14806  df-mulg 14807  df-subg 14933  df-nsg 14934  df-eqg 14935  df-ghm 14996  df-gim 15038  df-ga 15059  df-cntz 15108  df-oppg 15134  df-od 15159  df-gex 15160  df-pgp 15161  df-lsm 15262  df-pj1 15263  df-cmn 15406  df-abl 15407  df-cyg 15480  df-dprd 15548  df-dpj 15549  df-mgp 15641  df-rng 15655  df-cring 15656  df-ur 15657  df-oppr 15720  df-dvdsr 15738  df-unit 15739  df-invr 15769  df-dvr 15780  df-rnghom 15811  df-drng 15829  df-subrg 15858  df-lmod 15944  df-lss 16001  df-lsp 16040  df-sra 16236  df-rgmod 16237  df-lidl 16238  df-rsp 16239  df-2idl 16295  df-psmet 16686  df-xmet 16687  df-met 16688  df-bl 16689  df-mopn 16690  df-fbas 16691  df-fg 16692  df-cnfld 16696  df-zrh 16774  df-zn 16777  df-top 16955  df-bases 16957  df-topon 16958  df-topsp 16959  df-cld 17075  df-ntr 17076  df-cls 17077  df-nei 17154  df-lp 17192  df-perf 17193  df-cn 17283  df-cnp 17284  df-haus 17371  df-cmp 17442  df-tx 17586  df-hmeo 17779  df-fil 17870  df-fm 17962  df-flim 17963  df-flf 17964  df-xms 18342  df-ms 18343  df-tms 18344  df-cncf 18900  df-0p 19554  df-limc 19745  df-dv 19746  df-ply 20099  df-idp 20100  df-coe 20101  df-dgr 20102  df-quot 20200  df-log 20446  df-cxp 20447  df-em 20823  df-cht 20871  df-vma 20872  df-chp 20873  df-ppi 20874  df-mu 20875  df-dchr 21009
  Copyright terms: Public domain W3C validator