MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrmusum2 Unicode version

Theorem dchrmusum2 20639
Description: The sum of the Möbius function multiplied by a non-principal Dirichlet character, divided by  n, is bounded, provided that  T  =/=  0. Lemma 9.4.2 of [Shapiro], p. 380. (Contributed by Mario Carneiro, 4-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum.g  |-  G  =  (DChr `  N )
rpvmasum.d  |-  D  =  ( Base `  G
)
rpvmasum.1  |-  .1.  =  ( 0g `  G )
dchrisum.b  |-  ( ph  ->  X  e.  D )
dchrisum.n1  |-  ( ph  ->  X  =/=  .1.  )
dchrisumn0.f  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  a ) )
dchrisumn0.c  |-  ( ph  ->  C  e.  ( 0 [,)  +oo ) )
dchrisumn0.t  |-  ( ph  ->  seq  1 (  +  ,  F )  ~~>  T )
dchrisumn0.1  |-  ( ph  ->  A. y  e.  ( 1 [,)  +oo )
( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  y ) )  -  T ) )  <_ 
( C  /  y
) )
Assertion
Ref Expression
dchrmusum2  |-  ( ph  ->  ( x  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  T ) )  e.  O ( 1 ) )
Distinct variable groups:    x, y,  .1.    x, d, y, C    F, d, x, y    a,
d, x, y    x, N, y    ph, d, x    T, d, x, y    x, Z, y    x, D, y    L, a, d, x, y    X, a, d, x, y
Allowed substitution hints:    ph( y, a)    C( a)    D( a, d)    T( a)    .1. ( a, d)    F( a)    G( x, y, a, d)    N( a, d)    Z( a, d)

Proof of Theorem dchrmusum2
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpssre 10360 . . . 4  |-  RR+  C_  RR
2 ax-1cn 8791 . . . 4  |-  1  e.  CC
3 o1const 12089 . . . 4  |-  ( (
RR+  C_  RR  /\  1  e.  CC )  ->  (
x  e.  RR+  |->  1 )  e.  O ( 1 ) )
41, 2, 3mp2an 653 . . 3  |-  ( x  e.  RR+  |->  1 )  e.  O ( 1 )
54a1i 10 . 2  |-  ( ph  ->  ( x  e.  RR+  |->  1 )  e.  O
( 1 ) )
62a1i 10 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  1  e.  CC )
7 fzfid 11031 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 1 ... ( |_ `  x ) )  e. 
Fin )
8 rpvmasum.g . . . . . . 7  |-  G  =  (DChr `  N )
9 rpvmasum.z . . . . . . 7  |-  Z  =  (ℤ/n `  N )
10 rpvmasum.d . . . . . . 7  |-  D  =  ( Base `  G
)
11 rpvmasum.l . . . . . . 7  |-  L  =  ( ZRHom `  Z
)
12 dchrisum.b . . . . . . . 8  |-  ( ph  ->  X  e.  D )
1312ad2antrr 706 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  X  e.  D )
14 elfzelz 10794 . . . . . . . 8  |-  ( d  e.  ( 1 ... ( |_ `  x
) )  ->  d  e.  ZZ )
1514adantl 452 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  ZZ )
168, 9, 10, 11, 13, 15dchrzrhcl 20480 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( X `  ( L `  d
) )  e.  CC )
17 elfznn 10815 . . . . . . . . 9  |-  ( d  e.  ( 1 ... ( |_ `  x
) )  ->  d  e.  NN )
1817adantl 452 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  NN )
19 mucl 20375 . . . . . . . . . 10  |-  ( d  e.  NN  ->  (
mmu `  d )  e.  ZZ )
2019zred 10113 . . . . . . . . 9  |-  ( d  e.  NN  ->  (
mmu `  d )  e.  RR )
21 nndivre 9777 . . . . . . . . 9  |-  ( ( ( mmu `  d
)  e.  RR  /\  d  e.  NN )  ->  ( ( mmu `  d )  /  d
)  e.  RR )
2220, 21mpancom 650 . . . . . . . 8  |-  ( d  e.  NN  ->  (
( mmu `  d
)  /  d )  e.  RR )
2318, 22syl 15 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  d )  /  d )  e.  RR )
2423recnd 8857 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  d )  /  d )  e.  CC )
2516, 24mulcld 8851 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  e.  CC )
267, 25fsumcl 12202 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  e.  CC )
27 dchrisumn0.t . . . . . 6  |-  ( ph  ->  seq  1 (  +  ,  F )  ~~>  T )
28 climcl 11969 . . . . . 6  |-  (  seq  1 (  +  ,  F )  ~~>  T  ->  T  e.  CC )
2927, 28syl 15 . . . . 5  |-  ( ph  ->  T  e.  CC )
3029adantr 451 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  T  e.  CC )
3126, 30mulcld 8851 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  T )  e.  CC )
321a1i 10 . . . 4  |-  ( ph  -> 
RR+  C_  RR )
33 subcl 9047 . . . . 5  |-  ( ( 1  e.  CC  /\  ( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  T )  e.  CC )  ->  (
1  -  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  T ) )  e.  CC )
342, 31, 33sylancr 644 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 1  -  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  T ) )  e.  CC )
35 1re 8833 . . . . 5  |-  1  e.  RR
3635a1i 10 . . . 4  |-  ( ph  ->  1  e.  RR )
37 dchrisumn0.c . . . . . 6  |-  ( ph  ->  C  e.  ( 0 [,)  +oo ) )
38 elrege0 10742 . . . . . 6  |-  ( C  e.  ( 0 [,) 
+oo )  <->  ( C  e.  RR  /\  0  <_  C ) )
3937, 38sylib 188 . . . . 5  |-  ( ph  ->  ( C  e.  RR  /\  0  <_  C )
)
4039simpld 445 . . . 4  |-  ( ph  ->  C  e.  RR )
41 fzfid 11031 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( 1 ... ( |_ `  x ) )  e.  Fin )
4225adantlrr 701 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  e.  CC )
43 nnuz 10259 . . . . . . . . . . . 12  |-  NN  =  ( ZZ>= `  1 )
44 1z 10049 . . . . . . . . . . . . 13  |-  1  e.  ZZ
4544a1i 10 . . . . . . . . . . . 12  |-  ( ph  ->  1  e.  ZZ )
4612adantr 451 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  m  e.  NN )  ->  X  e.  D )
47 nnz 10041 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  NN  ->  m  e.  ZZ )
4847adantl 452 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  m  e.  NN )  ->  m  e.  ZZ )
498, 9, 10, 11, 46, 48dchrzrhcl 20480 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  NN )  ->  ( X `
 ( L `  m ) )  e.  CC )
50 nncn 9750 . . . . . . . . . . . . . . . 16  |-  ( m  e.  NN  ->  m  e.  CC )
5150adantl 452 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  NN )  ->  m  e.  CC )
52 nnne0 9774 . . . . . . . . . . . . . . . 16  |-  ( m  e.  NN  ->  m  =/=  0 )
5352adantl 452 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  NN )  ->  m  =/=  0 )
5449, 51, 53divcld 9532 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( X `  ( L `
 m ) )  /  m )  e.  CC )
55 dchrisumn0.f . . . . . . . . . . . . . . 15  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  a ) )
56 fveq2 5486 . . . . . . . . . . . . . . . . . 18  |-  ( a  =  m  ->  ( L `  a )  =  ( L `  m ) )
5756fveq2d 5490 . . . . . . . . . . . . . . . . 17  |-  ( a  =  m  ->  ( X `  ( L `  a ) )  =  ( X `  ( L `  m )
) )
58 id 19 . . . . . . . . . . . . . . . . 17  |-  ( a  =  m  ->  a  =  m )
5957, 58oveq12d 5838 . . . . . . . . . . . . . . . 16  |-  ( a  =  m  ->  (
( X `  ( L `  a )
)  /  a )  =  ( ( X `
 ( L `  m ) )  /  m ) )
6059cbvmptv 4112 . . . . . . . . . . . . . . 15  |-  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  /  a ) )  =  ( m  e.  NN  |->  ( ( X `
 ( L `  m ) )  /  m ) )
6155, 60eqtri 2304 . . . . . . . . . . . . . 14  |-  F  =  ( m  e.  NN  |->  ( ( X `  ( L `  m ) )  /  m ) )
6254, 61fmptd 5646 . . . . . . . . . . . . 13  |-  ( ph  ->  F : NN --> CC )
63 ffvelrn 5625 . . . . . . . . . . . . 13  |-  ( ( F : NN --> CC  /\  m  e.  NN )  ->  ( F `  m
)  e.  CC )
6462, 63sylan 457 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  ( F `
 m )  e.  CC )
6543, 45, 64serf 11070 . . . . . . . . . . 11  |-  ( ph  ->  seq  1 (  +  ,  F ) : NN --> CC )
6665ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  seq  1 (  +  ,  F ) : NN --> CC )
67 simprl 732 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  x  e.  RR+ )
6867rpred 10386 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  x  e.  RR )
69 nndivre 9777 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  d  e.  NN )  ->  ( x  /  d
)  e.  RR )
7068, 17, 69syl2an 463 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  / 
d )  e.  RR )
7117adantl 452 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  NN )
7271nncnd 9758 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  CC )
7372mulid2d 8849 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  x.  d )  =  d )
74 fznnfl 10962 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR  ->  (
d  e.  ( 1 ... ( |_ `  x ) )  <->  ( d  e.  NN  /\  d  <_  x ) ) )
7568, 74syl 15 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( d  e.  ( 1 ... ( |_
`  x ) )  <-> 
( d  e.  NN  /\  d  <_  x )
) )
7675simplbda 607 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  <_  x
)
7773, 76eqbrtrd 4044 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  x.  d )  <_  x
)
7835a1i 10 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  e.  RR )
7968adantr 451 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR )
8071nnrpd 10385 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  RR+ )
8178, 79, 80lemuldivd 10431 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( 1  x.  d )  <_  x 
<->  1  <_  ( x  /  d ) ) )
8277, 81mpbid 201 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  <_  (
x  /  d ) )
83 flge1nn 10945 . . . . . . . . . . 11  |-  ( ( ( x  /  d
)  e.  RR  /\  1  <_  ( x  / 
d ) )  -> 
( |_ `  (
x  /  d ) )  e.  NN )
8470, 82, 83syl2anc 642 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( |_ `  ( x  /  d
) )  e.  NN )
85 ffvelrn 5625 . . . . . . . . . 10  |-  ( (  seq  1 (  +  ,  F ) : NN --> CC  /\  ( |_ `  ( x  / 
d ) )  e.  NN )  ->  (  seq  1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  e.  CC )
8666, 84, 85syl2anc 642 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  (  seq  1
(  +  ,  F
) `  ( |_ `  ( x  /  d
) ) )  e.  CC )
8742, 86mulcld 8851 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( ( X `  ( L `
 d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (  seq  1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) ) )  e.  CC )
8829ad2antrr 706 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  T  e.  CC )
8942, 88mulcld 8851 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( ( X `  ( L `
 d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  T
)  e.  CC )
9041, 87, 89fsumsub 12246 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (  seq  1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) ) )  -  ( ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  T ) )  =  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (  seq  1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) ) )  -  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  T
) ) )
9142, 86, 88subdid 9231 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( ( X `  ( L `
 d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  ( x  /  d
) ) )  -  T ) )  =  ( ( ( ( X `  ( L `
 d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (  seq  1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) ) )  -  ( ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  T ) ) )
9291sumeq2dv 12172 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  ( (  seq  1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T ) )  =  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( ( ( X `  ( L `
 d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (  seq  1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) ) )  -  ( ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  T ) ) )
9312ad3antrrr 710 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  X  e.  D )
9414ad2antlr 707 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  d  e.  ZZ )
95 elfzelz 10794 . . . . . . . . . . . . . . . . . . 19  |-  ( m  e.  ( 1 ... ( |_ `  (
x  /  d ) ) )  ->  m  e.  ZZ )
9695adantl 452 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  m  e.  ZZ )
978, 9, 10, 11, 93, 94, 96dchrzrhmul 20481 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( X `  ( L `  (
d  x.  m ) ) )  =  ( ( X `  ( L `  d )
)  x.  ( X `
 ( L `  m ) ) ) )
9897oveq1d 5835 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( ( X `  ( L `  ( d  x.  m
) ) )  / 
( d  x.  m
) )  =  ( ( ( X `  ( L `  d ) )  x.  ( X `
 ( L `  m ) ) )  /  ( d  x.  m ) ) )
9916adantlrr 701 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( X `  ( L `  d ) )  e.  CC )
10099adantr 451 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( X `  ( L `  d
) )  e.  CC )
10172adantr 451 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  d  e.  CC )
1028, 9, 10, 11, 93, 96dchrzrhcl 20480 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( X `  ( L `  m
) )  e.  CC )
103 elfznn 10815 . . . . . . . . . . . . . . . . . . 19  |-  ( m  e.  ( 1 ... ( |_ `  (
x  /  d ) ) )  ->  m  e.  NN )
104103adantl 452 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  m  e.  NN )
105104nncnd 9758 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  m  e.  CC )
10671nnne0d 9786 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  =/=  0
)
107106adantr 451 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  d  =/=  0 )
108104nnne0d 9786 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  m  =/=  0 )
109100, 101, 102, 105, 107, 108divmuldivd 9573 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( (
( X `  ( L `  d )
)  /  d )  x.  ( ( X `
 ( L `  m ) )  /  m ) )  =  ( ( ( X `
 ( L `  d ) )  x.  ( X `  ( L `  m )
) )  /  (
d  x.  m ) ) )
11098, 109eqtr4d 2319 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( ( X `  ( L `  ( d  x.  m
) ) )  / 
( d  x.  m
) )  =  ( ( ( X `  ( L `  d ) )  /  d )  x.  ( ( X `
 ( L `  m ) )  /  m ) ) )
111110oveq2d 5836 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( (
mmu `  d )  x.  ( ( X `  ( L `  ( d  x.  m ) ) )  /  ( d  x.  m ) ) )  =  ( ( mmu `  d )  x.  ( ( ( X `  ( L `
 d ) )  /  d )  x.  ( ( X `  ( L `  m ) )  /  m ) ) ) )
11271, 19syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( mmu `  d )  e.  ZZ )
113112zcnd 10114 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( mmu `  d )  e.  CC )
114113adantr 451 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( mmu `  d )  e.  CC )
115100, 101, 107divcld 9532 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( ( X `  ( L `  d ) )  / 
d )  e.  CC )
116102, 105, 108divcld 9532 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( ( X `  ( L `  m ) )  /  m )  e.  CC )
117114, 115, 116mulassd 8854 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( (
( mmu `  d
)  x.  ( ( X `  ( L `
 d ) )  /  d ) )  x.  ( ( X `
 ( L `  m ) )  /  m ) )  =  ( ( mmu `  d )  x.  (
( ( X `  ( L `  d ) )  /  d )  x.  ( ( X `
 ( L `  m ) )  /  m ) ) ) )
118114, 100, 101, 107div12d 9568 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( (
mmu `  d )  x.  ( ( X `  ( L `  d ) )  /  d ) )  =  ( ( X `  ( L `
 d ) )  x.  ( ( mmu `  d )  /  d
) ) )
119118oveq1d 5835 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( (
( mmu `  d
)  x.  ( ( X `  ( L `
 d ) )  /  d ) )  x.  ( ( X `
 ( L `  m ) )  /  m ) )  =  ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (
( X `  ( L `  m )
)  /  m ) ) )
120111, 117, 1193eqtr2d 2322 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( (
mmu `  d )  x.  ( ( X `  ( L `  ( d  x.  m ) ) )  /  ( d  x.  m ) ) )  =  ( ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  ( ( X `
 ( L `  m ) )  /  m ) ) )
121120sumeq2dv 12172 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) ( ( mmu `  d )  x.  (
( X `  ( L `  ( d  x.  m ) ) )  /  ( d  x.  m ) ) )  =  sum_ m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (
( X `  ( L `  m )
)  /  m ) ) )
122 fzfid 11031 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  (
x  /  d ) ) )  e.  Fin )
123 simpll 730 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ph )
124123, 103, 54syl2an 463 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( ( X `  ( L `  m ) )  /  m )  e.  CC )
125122, 42, 124fsummulc2 12242 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( ( X `  ( L `
 d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  d ) ) ) ( ( X `  ( L `
 m ) )  /  m ) )  =  sum_ m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (
( X `  ( L `  m )
)  /  m ) ) )
126 ovex 5845 . . . . . . . . . . . . . . . 16  |-  ( ( X `  ( L `
 m ) )  /  m )  e. 
_V
12759, 55, 126fvmpt 5564 . . . . . . . . . . . . . . 15  |-  ( m  e.  NN  ->  ( F `  m )  =  ( ( X `
 ( L `  m ) )  /  m ) )
128104, 127syl 15 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( F `  m )  =  ( ( X `  ( L `  m )
)  /  m ) )
12984, 43syl6eleq 2374 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( |_ `  ( x  /  d
) )  e.  (
ZZ>= `  1 ) )
130128, 129, 124fsumser 12199 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  m )  =  (  seq  1
(  +  ,  F
) `  ( |_ `  ( x  /  d
) ) ) )
131130oveq2d 5836 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( ( X `  ( L `
 d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  d ) ) ) ( ( X `  ( L `
 m ) )  /  m ) )  =  ( ( ( X `  ( L `
 d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (  seq  1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) ) ) )
132121, 125, 1313eqtr2rd 2323 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( ( X `  ( L `
 d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (  seq  1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) ) )  =  sum_ m  e.  ( 1 ... ( |_ `  ( x  / 
d ) ) ) ( ( mmu `  d )  x.  (
( X `  ( L `  ( d  x.  m ) ) )  /  ( d  x.  m ) ) ) )
133132sumeq2dv 12172 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  (  seq  1
(  +  ,  F
) `  ( |_ `  ( x  /  d
) ) ) )  =  sum_ d  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  d
) ) ) ( ( mmu `  d
)  x.  ( ( X `  ( L `
 ( d  x.  m ) ) )  /  ( d  x.  m ) ) ) )
134 fveq2 5486 . . . . . . . . . . . . . 14  |-  ( n  =  ( d  x.  m )  ->  ( L `  n )  =  ( L `  ( d  x.  m
) ) )
135134fveq2d 5490 . . . . . . . . . . . . 13  |-  ( n  =  ( d  x.  m )  ->  ( X `  ( L `  n ) )  =  ( X `  ( L `  ( d  x.  m ) ) ) )
136 id 19 . . . . . . . . . . . . 13  |-  ( n  =  ( d  x.  m )  ->  n  =  ( d  x.  m ) )
137135, 136oveq12d 5838 . . . . . . . . . . . 12  |-  ( n  =  ( d  x.  m )  ->  (
( X `  ( L `  n )
)  /  n )  =  ( ( X `
 ( L `  ( d  x.  m
) ) )  / 
( d  x.  m
) ) )
138137oveq2d 5836 . . . . . . . . . . 11  |-  ( n  =  ( d  x.  m )  ->  (
( mmu `  d
)  x.  ( ( X `  ( L `
 n ) )  /  n ) )  =  ( ( mmu `  d )  x.  (
( X `  ( L `  ( d  x.  m ) ) )  /  ( d  x.  m ) ) ) )
139 ssrab2 3259 . . . . . . . . . . . . . . . 16  |-  { y  e.  NN  |  y 
||  n }  C_  NN
140139sseli 3177 . . . . . . . . . . . . . . 15  |-  ( d  e.  { y  e.  NN  |  y  ||  n }  ->  d  e.  NN )
141140ad2antll 709 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( n  e.  (
1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  -> 
d  e.  NN )
142141, 19syl 15 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( n  e.  (
1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  -> 
( mmu `  d
)  e.  ZZ )
143142zcnd 10114 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( n  e.  (
1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  -> 
( mmu `  d
)  e.  CC )
14412ad2antrr 706 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  X  e.  D
)
145 elfzelz 10794 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  ZZ )
146145adantl 452 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  ZZ )
1478, 9, 10, 11, 144, 146dchrzrhcl 20480 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( X `  ( L `  n ) )  e.  CC )
14817ssriv 3185 . . . . . . . . . . . . . . . . 17  |-  ( 1 ... ( |_ `  x ) )  C_  NN
149148a1i 10 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( 1 ... ( |_ `  x ) ) 
C_  NN )
150149sselda 3181 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
151150nncnd 9758 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  CC )
152150nnne0d 9786 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  =/=  0
)
153147, 151, 152divcld 9532 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( X `
 ( L `  n ) )  /  n )  e.  CC )
154153adantrr 697 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( n  e.  (
1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  -> 
( ( X `  ( L `  n ) )  /  n )  e.  CC )
155143, 154mulcld 8851 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( n  e.  (
1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  -> 
( ( mmu `  d )  x.  (
( X `  ( L `  n )
)  /  n ) )  e.  CC )
156138, 68, 155dvdsflsumcom 20424 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) sum_ d  e.  { y  e.  NN  |  y  ||  n }  ( (
mmu `  d )  x.  ( ( X `  ( L `  n ) )  /  n ) )  =  sum_ d  e.  ( 1 ... ( |_ `  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  d
) ) ) ( ( mmu `  d
)  x.  ( ( X `  ( L `
 ( d  x.  m ) ) )  /  ( d  x.  m ) ) ) )
157 fveq2 5486 . . . . . . . . . . . . 13  |-  ( n  =  1  ->  ( L `  n )  =  ( L ` 
1 ) )
158157fveq2d 5490 . . . . . . . . . . . 12  |-  ( n  =  1  ->  ( X `  ( L `  n ) )  =  ( X `  ( L `  1 )
) )
159 id 19 . . . . . . . . . . . 12  |-  ( n  =  1  ->  n  =  1 )
160158, 159oveq12d 5838 . . . . . . . . . . 11  |-  ( n  =  1  ->  (
( X `  ( L `  n )
)  /  n )  =  ( ( X `
 ( L ` 
1 ) )  / 
1 ) )
161 simprr 733 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
1  <_  x )
162 flge1nn 10945 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR  /\  1  <_  x )  -> 
( |_ `  x
)  e.  NN )
16368, 161, 162syl2anc 642 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( |_ `  x
)  e.  NN )
164163, 43syl6eleq 2374 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( |_ `  x
)  e.  ( ZZ>= ` 
1 ) )
165 eluzfz1 10799 . . . . . . . . . . . 12  |-  ( ( |_ `  x )  e.  ( ZZ>= `  1
)  ->  1  e.  ( 1 ... ( |_ `  x ) ) )
166164, 165syl 15 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
1  e.  ( 1 ... ( |_ `  x ) ) )
167160, 41, 149, 166, 153musumsum 20428 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) sum_ d  e.  { y  e.  NN  |  y  ||  n }  ( (
mmu `  d )  x.  ( ( X `  ( L `  n ) )  /  n ) )  =  ( ( X `  ( L `
 1 ) )  /  1 ) )
168133, 156, 1673eqtr2d 2322 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  (  seq  1
(  +  ,  F
) `  ( |_ `  ( x  /  d
) ) ) )  =  ( ( X `
 ( L ` 
1 ) )  / 
1 ) )
1698, 9, 10, 11, 12dchrzrh1 20479 . . . . . . . . . . . 12  |-  ( ph  ->  ( X `  ( L `  1 )
)  =  1 )
170169adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( X `  ( L `  1 )
)  =  1 )
171170oveq1d 5835 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( X `  ( L `  1 ) )  /  1 )  =  ( 1  / 
1 ) )
1722div1i 9484 . . . . . . . . . 10  |-  ( 1  /  1 )  =  1
173171, 172syl6eq 2332 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( X `  ( L `  1 ) )  /  1 )  =  1 )
174168, 173eqtr2d 2317 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
1  =  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (  seq  1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) ) ) )
17529adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  T  e.  CC )
17641, 175, 42fsummulc1 12243 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  T )  = 
sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  T
) )
177174, 176oveq12d 5838 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( 1  -  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  T ) )  =  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (  seq  1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) ) )  -  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  T
) ) )
17890, 92, 1773eqtr4rd 2327 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( 1  -  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  T ) )  =  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  ( x  /  d
) ) )  -  T ) ) )
179178fveq2d 5490 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  (
1  -  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  T ) ) )  =  ( abs `  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  ( x  /  d
) ) )  -  T ) ) ) )
18086, 88subcld 9153 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (  seq  1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T )  e.  CC )
18142, 180mulcld 8851 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( ( X `  ( L `
 d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  ( x  /  d
) ) )  -  T ) )  e.  CC )
18241, 181fsumcl 12202 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  ( (  seq  1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T ) )  e.  CC )
183182abscld 11914 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  ( (  seq  1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T ) ) )  e.  RR )
184181abscld 11914 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  ( (  seq  1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T ) ) )  e.  RR )
18541, 184fsumrecl 12203 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( abs `  ( ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  ( (  seq  1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T ) ) )  e.  RR )
18640adantr 451 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  C  e.  RR )
18741, 181fsumabs 12255 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  ( (  seq  1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T ) ) )  <_  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  ( (  seq  1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T ) ) ) )
188 reflcl 10924 . . . . . . . . . 10  |-  ( x  e.  RR  ->  ( |_ `  x )  e.  RR )
18968, 188syl 15 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( |_ `  x
)  e.  RR )
190189, 186remulcld 8859 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( |_ `  x )  x.  C
)  e.  RR )
191190, 67rerpdivcld 10413 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( ( |_
`  x )  x.  C )  /  x
)  e.  RR )
192186, 67rerpdivcld 10413 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( C  /  x
)  e.  RR )
193192adantr 451 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( C  /  x )  e.  RR )
19442abscld 11914 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) ) )  e.  RR )
19571nnrecred 9787 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  / 
d )  e.  RR )
196180abscld 11914 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  ( x  /  d
) ) )  -  T ) )  e.  RR )
19780rpred 10386 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  RR )
198193, 197remulcld 8859 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( C  /  x )  x.  d )  e.  RR )
19942absge0d 11922 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( abs `  ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) ) ) )
200180absge0d 11922 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( abs `  ( (  seq  1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T ) ) )
20199abscld 11914 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( X `  ( L `  d ) ) )  e.  RR )
20224adantlrr 701 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( mmu `  d )  /  d
)  e.  CC )
203202abscld 11914 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
( mmu `  d
)  /  d ) )  e.  RR )
20499absge0d 11922 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( abs `  ( X `  ( L `  d ) ) ) )
205202absge0d 11922 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( abs `  ( ( mmu `  d )  /  d
) ) )
206 eqid 2284 . . . . . . . . . . . . . 14  |-  ( Base `  Z )  =  (
Base `  Z )
20712ad2antrr 706 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  X  e.  D
)
208 rpvmasum.a . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  N  e.  NN )
209208nnnn0d 10014 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  N  e.  NN0 )
2109, 206, 11znzrhfo 16497 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN0  ->  L : ZZ -onto-> ( Base `  Z
) )
211 fof 5417 . . . . . . . . . . . . . . . . 17  |-  ( L : ZZ -onto-> ( Base `  Z )  ->  L : ZZ --> ( Base `  Z
) )
212209, 210, 2113syl 18 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  L : ZZ --> ( Base `  Z ) )
213212adantr 451 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  L : ZZ --> ( Base `  Z ) )
214 ffvelrn 5625 . . . . . . . . . . . . . . 15  |-  ( ( L : ZZ --> ( Base `  Z )  /\  d  e.  ZZ )  ->  ( L `  d )  e.  ( Base `  Z
) )
215213, 14, 214syl2an 463 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( L `  d )  e.  (
Base `  Z )
)
2168, 10, 9, 206, 207, 215dchrabs2 20497 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( X `  ( L `  d ) ) )  <_  1 )
217113, 72, 106absdivd 11933 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
( mmu `  d
)  /  d ) )  =  ( ( abs `  ( mmu `  d ) )  / 
( abs `  d
) ) )
21880rprege0d 10393 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( d  e.  RR  /\  0  <_ 
d ) )
219 absid 11777 . . . . . . . . . . . . . . . . 17  |-  ( ( d  e.  RR  /\  0  <_  d )  -> 
( abs `  d
)  =  d )
220218, 219syl 15 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  d
)  =  d )
221220oveq2d 5836 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( mmu `  d
) )  /  ( abs `  d ) )  =  ( ( abs `  ( mmu `  d
) )  /  d
) )
222217, 221eqtrd 2316 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
( mmu `  d
)  /  d ) )  =  ( ( abs `  ( mmu `  d ) )  / 
d ) )
223113abscld 11914 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
mmu `  d )
)  e.  RR )
224 mule1 20382 . . . . . . . . . . . . . . . 16  |-  ( d  e.  NN  ->  ( abs `  ( mmu `  d ) )  <_ 
1 )
22571, 224syl 15 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
mmu `  d )
)  <_  1 )
226223, 78, 80, 225lediv1dd 10440 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( mmu `  d
) )  /  d
)  <_  ( 1  /  d ) )
227222, 226eqbrtrd 4044 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
( mmu `  d
)  /  d ) )  <_  ( 1  /  d ) )
228201, 78, 203, 195, 204, 205, 216, 227lemul12ad 9695 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( X `  ( L `  d )
) )  x.  ( abs `  ( ( mmu `  d )  /  d
) ) )  <_ 
( 1  x.  (
1  /  d ) ) )
22999, 202absmuld 11932 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) ) )  =  ( ( abs `  ( X `
 ( L `  d ) ) )  x.  ( abs `  (
( mmu `  d
)  /  d ) ) ) )
230195recnd 8857 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  / 
d )  e.  CC )
231230mulid2d 8849 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  x.  ( 1  /  d
) )  =  ( 1  /  d ) )
232231eqcomd 2289 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  / 
d )  =  ( 1  x.  ( 1  /  d ) ) )
233228, 229, 2323brtr4d 4054 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) ) )  <_  ( 1  /  d ) )
234 elicopnf 10735 . . . . . . . . . . . . . . 15  |-  ( 1  e.  RR  ->  (
( x  /  d
)  e.  ( 1 [,)  +oo )  <->  ( (
x  /  d )  e.  RR  /\  1  <_  ( x  /  d
) ) ) )
23535, 234ax-mp 8 . . . . . . . . . . . . . 14  |-  ( ( x  /  d )  e.  ( 1 [,) 
+oo )  <->  ( (
x  /  d )  e.  RR  /\  1  <_  ( x  /  d
) ) )
23670, 82, 235sylanbrc 645 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  / 
d )  e.  ( 1 [,)  +oo )
)
237 dchrisumn0.1 . . . . . . . . . . . . . 14  |-  ( ph  ->  A. y  e.  ( 1 [,)  +oo )
( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  y ) )  -  T ) )  <_ 
( C  /  y
) )
238237ad2antrr 706 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  A. y  e.  ( 1 [,)  +oo )
( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  y ) )  -  T ) )  <_ 
( C  /  y
) )
239 fveq2 5486 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  ( x  / 
d )  ->  ( |_ `  y )  =  ( |_ `  (
x  /  d ) ) )
240239fveq2d 5490 . . . . . . . . . . . . . . . . 17  |-  ( y  =  ( x  / 
d )  ->  (  seq  1 (  +  ,  F ) `  ( |_ `  y ) )  =  (  seq  1
(  +  ,  F
) `  ( |_ `  ( x  /  d
) ) ) )
241240oveq1d 5835 . . . . . . . . . . . . . . . 16  |-  ( y  =  ( x  / 
d )  ->  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  y ) )  -  T )  =  ( (  seq  1 (  +  ,  F ) `
 ( |_ `  ( x  /  d
) ) )  -  T ) )
242241fveq2d 5490 . . . . . . . . . . . . . . 15  |-  ( y  =  ( x  / 
d )  ->  ( abs `  ( (  seq  1 (  +  ,  F ) `  ( |_ `  y ) )  -  T ) )  =  ( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  ( x  /  d
) ) )  -  T ) ) )
243 oveq2 5828 . . . . . . . . . . . . . . 15  |-  ( y  =  ( x  / 
d )  ->  ( C  /  y )  =  ( C  /  (
x  /  d ) ) )
244242, 243breq12d 4037 . . . . . . . . . . . . . 14  |-  ( y  =  ( x  / 
d )  ->  (
( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  y ) )  -  T ) )  <_ 
( C  /  y
)  <->  ( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  ( x  /  d
) ) )  -  T ) )  <_ 
( C  /  (
x  /  d ) ) ) )
245244rspcv 2881 . . . . . . . . . . . . 13  |-  ( ( x  /  d )  e.  ( 1 [,) 
+oo )  ->  ( A. y  e.  (
1 [,)  +oo ) ( abs `  ( (  seq  1 (  +  ,  F ) `  ( |_ `  y ) )  -  T ) )  <_  ( C  /  y )  -> 
( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  ( x  /  d
) ) )  -  T ) )  <_ 
( C  /  (
x  /  d ) ) ) )
246236, 238, 245sylc 56 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  ( x  /  d
) ) )  -  T ) )  <_ 
( C  /  (
x  /  d ) ) )
247186recnd 8857 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  C  e.  CC )
248247adantr 451 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  C  e.  CC )
249 rpcnne0 10367 . . . . . . . . . . . . . . . 16  |-  ( x  e.  RR+  ->  ( x  e.  CC  /\  x  =/=  0 ) )
250249ad2antrl 708 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( x  e.  CC  /\  x  =/=  0 ) )
251250adantr 451 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  e.  CC  /\  x  =/=  0 ) )
252 divdiv2 9468 . . . . . . . . . . . . . 14  |-  ( ( C  e.  CC  /\  ( x  e.  CC  /\  x  =/=  0 )  /\  ( d  e.  CC  /\  d  =/=  0 ) )  -> 
( C  /  (
x  /  d ) )  =  ( ( C  x.  d )  /  x ) )
253248, 251, 72, 106, 252syl112anc 1186 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( C  / 
( x  /  d
) )  =  ( ( C  x.  d
)  /  x ) )
254 div23 9439 . . . . . . . . . . . . . 14  |-  ( ( C  e.  CC  /\  d  e.  CC  /\  (
x  e.  CC  /\  x  =/=  0 ) )  ->  ( ( C  x.  d )  /  x )  =  ( ( C  /  x
)  x.  d ) )
255248, 72, 251, 254syl3anc 1182 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( C  x.  d )  /  x )  =  ( ( C  /  x
)  x.  d ) )
256253, 255eqtrd 2316 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( C  / 
( x  /  d
) )  =  ( ( C  /  x
)  x.  d ) )
257246, 256breqtrd 4048 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  ( x  /  d
) ) )  -  T ) )  <_ 
( ( C  /  x )  x.  d
) )
258194, 195, 196, 198, 199, 200, 233, 257lemul12ad 9695 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) ) )  x.  ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  ( x  /  d
) ) )  -  T ) ) )  <_  ( ( 1  /  d )  x.  ( ( C  /  x )  x.  d
) ) )
25942, 180absmuld 11932 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  ( (  seq  1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T ) ) )  =  ( ( abs `  ( ( X `  ( L `
 d ) )  x.  ( ( mmu `  d )  /  d
) ) )  x.  ( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  ( x  /  d
) ) )  -  T ) ) ) )
260192recnd 8857 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( C  /  x
)  e.  CC )
261260adantr 451 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( C  /  x )  e.  CC )
262261, 72, 106divcan4d 9538 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( ( C  /  x )  x.  d )  / 
d )  =  ( C  /  x ) )
263261, 72mulcld 8851 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( C  /  x )  x.  d )  e.  CC )
264263, 72, 106divrec2d 9536 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( ( C  /  x )  x.  d )  / 
d )  =  ( ( 1  /  d
)  x.  ( ( C  /  x )  x.  d ) ) )
265262, 264eqtr3d 2318 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( C  /  x )  =  ( ( 1  /  d
)  x.  ( ( C  /  x )  x.  d ) ) )
266258, 259, 2653brtr4d 4054 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  ( (  seq  1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T ) ) )  <_  ( C  /  x ) )
26741, 184, 193, 266fsumle 12253 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( abs `  ( ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  ( (  seq  1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T ) ) )  <_  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( C  /  x
) )
268163nnnn0d 10014 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( |_ `  x
)  e.  NN0 )
269 hashfz1 11341 . . . . . . . . . . 11  |-  ( ( |_ `  x )  e.  NN0  ->  ( # `  ( 1 ... ( |_ `  x ) ) )  =  ( |_
`  x ) )
270268, 269syl 15 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( # `  ( 1 ... ( |_ `  x ) ) )  =  ( |_ `  x ) )
271270oveq1d 5835 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( # `  (
1 ... ( |_ `  x ) ) )  x.  ( C  /  x ) )  =  ( ( |_ `  x )  x.  ( C  /  x ) ) )
272 fsumconst 12248 . . . . . . . . . 10  |-  ( ( ( 1 ... ( |_ `  x ) )  e.  Fin  /\  ( C  /  x )  e.  CC )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( C  /  x
)  =  ( (
# `  ( 1 ... ( |_ `  x
) ) )  x.  ( C  /  x
) ) )
27341, 260, 272syl2anc 642 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( C  /  x )  =  ( ( # `  ( 1 ... ( |_ `  x ) ) )  x.  ( C  /  x ) ) )
274163nncnd 9758 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( |_ `  x
)  e.  CC )
275 divass 9438 . . . . . . . . . 10  |-  ( ( ( |_ `  x
)  e.  CC  /\  C  e.  CC  /\  (
x  e.  CC  /\  x  =/=  0 ) )  ->  ( ( ( |_ `  x )  x.  C )  /  x )  =  ( ( |_ `  x
)  x.  ( C  /  x ) ) )
276274, 247, 250, 275syl3anc 1182 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( ( |_
`  x )  x.  C )  /  x
)  =  ( ( |_ `  x )  x.  ( C  /  x ) ) )
277271, 273, 2763eqtr4d 2326 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( C  /  x )  =  ( ( ( |_ `  x )  x.  C )  /  x ) )
278267, 277breqtrd 4048 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( abs `  ( ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  ( (  seq  1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T ) ) )  <_  ( (
( |_ `  x
)  x.  C )  /  x ) )
27939adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( C  e.  RR  /\  0  <_  C )
)
280 flle 10927 . . . . . . . . . 10  |-  ( x  e.  RR  ->  ( |_ `  x )  <_  x )
28168, 280syl 15 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( |_ `  x
)  <_  x )
282 lemul1a 9606 . . . . . . . . 9  |-  ( ( ( ( |_ `  x )  e.  RR  /\  x  e.  RR  /\  ( C  e.  RR  /\  0  <_  C )
)  /\  ( |_ `  x )  <_  x
)  ->  ( ( |_ `  x )  x.  C )  <_  (
x  x.  C ) )
283189, 68, 279, 281, 282syl31anc 1185 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( |_ `  x )  x.  C
)  <_  ( x  x.  C ) )
284190, 186, 67ledivmuld 10435 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( ( ( |_ `  x )  x.  C )  /  x )  <_  C  <->  ( ( |_ `  x
)  x.  C )  <_  ( x  x.  C ) ) )
285283, 284mpbird 223 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( ( |_
`  x )  x.  C )  /  x
)  <_  C )
286185, 191, 186, 278, 285letrd 8969 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( abs `  ( ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  ( (  seq  1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T ) ) )  <_  C )
287183, 185, 186, 187, 286letrd 8969 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  ( (  seq  1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T ) ) )  <_  C )
288179, 287eqbrtrd 4044 . . . 4  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  (
1  -  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  T ) ) )  <_  C )
28932, 34, 36, 40, 288elo1d 12006 . . 3  |-  ( ph  ->  ( x  e.  RR+  |->  ( 1  -  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  T ) ) )  e.  O ( 1 ) )
2906, 31, 289o1dif 12099 . 2  |-  ( ph  ->  ( ( x  e.  RR+  |->  1 )  e.  O ( 1 )  <-> 
( x  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  T ) )  e.  O ( 1 ) ) )
2915, 290mpbid 201 1  |-  ( ph  ->  ( x  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  T ) )  e.  O ( 1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1685    =/= wne 2447   A.wral 2544   {crab 2548    C_ wss 3153   class class class wbr 4024    e. cmpt 4078   -->wf 5217   -onto->wfo 5219   ` cfv 5221  (class class class)co 5820   Fincfn 6859   CCcc 8731   RRcr 8732   0cc0 8733   1c1 8734    + caddc 8736    x. cmul 8738    +oocpnf 8860    <_ cle 8864    - cmin 9033    / cdiv 9419   NNcn 9742   NN0cn0 9961   ZZcz 10020   ZZ>=cuz 10226   RR+crp 10350   [,)cico 10654   ...cfz 10778   |_cfl 10920    seq cseq 11042   #chash 11333   abscabs 11715    ~~> cli 11954   O (
1 )co1 11956   sum_csu 12154    || cdivides 12527   Basecbs 13144   0gc0g 13396   ZRHomczrh 16447  ℤ/nczn 16450   mmucmu 20328  DChrcdchr 20467
This theorem is referenced by:  dchrvmasumiflem2  20647  dchrmusumlem  20667
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-inf2 7338  ax-cnex 8789  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-pre-mulgt0 8810  ax-pre-sup 8811  ax-addf 8812  ax-mulf 8813
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-iin 3909  df-disj 3995  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-se 4352  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-isom 5230  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-of 6040  df-1st 6084  df-2nd 6085  df-tpos 6196  df-iota 6253  df-riota 6300  df-recs 6384  df-rdg 6419  df-1o 6475  df-2o 6476  df-oadd 6479  df-omul 6480  df-er 6656  df-ec 6658  df-qs 6662  df-map 6770  df-pm 6771  df-ixp 6814  df-en 6860  df-dom 6861  df-sdom 6862  df-fin 6863  df-fi 7161  df-sup 7190  df-oi 7221  df-card 7568  df-acn 7571  df-cda 7790  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-sub 9035  df-neg 9036  df-div 9420  df-nn 9743  df-2 9800  df-3 9801  df-4 9802  df-5 9803  df-6 9804  df-7 9805  df-8 9806  df-9 9807  df-10 9808  df-n0 9962  df-z 10021  df-dec 10121  df-uz 10227  df-q 10313  df-rp 10351  df-xneg 10448  df-xadd 10449  df-xmul 10450  df-ioo 10656  df-ioc 10657  df-ico 10658  df-icc 10659  df-fz 10779  df-fzo 10867  df-fl 10921  df-mod 10970  df-seq 11043  df-exp 11101  df-fac 11285  df-bc 11312  df-hash 11334  df-shft 11558  df-cj 11580  df-re 11581  df-im 11582  df-sqr 11716  df-abs 11717  df-limsup 11941  df-clim 11958  df-rlim 11959  df-o1 11960  df-lo1 11961  df-sum 12155  df-ef 12345  df-sin 12347  df-cos 12348  df-pi 12350  df-dvds 12528  df-gcd 12682  df-prm 12755  df-pc 12886  df-struct 13146  df-ndx 13147  df-slot 13148  df-base 13149  df-sets 13150  df-ress 13151  df-plusg 13217  df-mulr 13218  df-starv 13219  df-sca 13220  df-vsca 13221  df-tset 13223  df-ple 13224  df-ds 13226  df-hom 13228  df-cco 13229  df-rest 13323  df-topn 13324  df-topgen 13340  df-pt 13341  df-prds 13344  df-xrs 13399  df-0g 13400  df-gsum 13401  df-qtop 13406  df-imas 13407  df-divs 13408  df-xps 13409  df-mre 13484  df-mrc 13485  df-acs 13487  df-mnd 14363  df-mhm 14411  df-submnd 14412  df-grp 14485  df-minusg 14486  df-sbg 14487  df-mulg 14488  df-subg 14614  df-nsg 14615  df-eqg 14616  df-ghm 14677  df-cntz 14789  df-od 14840  df-cmn 15087  df-abl 15088  df-mgp 15322  df-rng 15336  df-cring 15337  df-ur 15338  df-oppr 15401  df-dvdsr 15419  df-unit 15420  df-invr 15450  df-dvr 15461  df-rnghom 15492  df-drng 15510  df-subrg 15539  df-lmod 15625  df-lss 15686  df-lsp 15725  df-sra 15921  df-rgmod 15922  df-lidl 15923  df-rsp 15924  df-2idl 15980  df-xmet 16369  df-met 16370  df-bl 16371  df-mopn 16372  df-cnfld 16374  df-zrh 16451  df-zn 16454  df-top 16632  df-bases 16634  df-topon 16635  df-topsp 16636  df-cld 16752  df-ntr 16753  df-cls 16754  df-nei 16831  df-lp 16864  df-perf 16865  df-cn 16953  df-cnp 16954  df-haus 17039  df-tx 17253  df-hmeo 17442  df-fbas 17516  df-fg 17517  df-fil 17537  df-fm 17629  df-flim 17630  df-flf 17631  df-xms 17881  df-ms 17882  df-tms 17883  df-cncf 18378  df-limc 19212  df-dv 19213  df-log 19910  df-cxp 19911  df-mu 20334  df-dchr 20468
  Copyright terms: Public domain W3C validator