MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrmusumlema Unicode version

Theorem dchrmusumlema 20754
Description: Lemma for dchrmusum 20785 and dchrisumn0 20782. Apply dchrisum 20753 for the function  1  /  y. (Contributed by Mario Carneiro, 4-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum.g  |-  G  =  (DChr `  N )
rpvmasum.d  |-  D  =  ( Base `  G
)
rpvmasum.1  |-  .1.  =  ( 0g `  G )
dchrisum.b  |-  ( ph  ->  X  e.  D )
dchrisum.n1  |-  ( ph  ->  X  =/=  .1.  )
dchrisumn0.f  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  a ) )
Assertion
Ref Expression
dchrmusumlema  |-  ( ph  ->  E. t E. c  e.  ( 0 [,)  +oo ) (  seq  1
(  +  ,  F
)  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) ) )
Distinct variable groups:    t, c,
y,  .1.    F, c, t, y    a, c, t, y    N, c, t, y    ph, c, t    y, Z    D, c, t, y    L, a, c, t, y    X, a, c, t, y
Allowed substitution hints:    ph( y, a)    D( a)    .1. ( a)    F( a)    G( y, t, a, c)    N( a)    Z( t, a, c)

Proof of Theorem dchrmusumlema
Dummy variables  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpvmasum.z . . 3  |-  Z  =  (ℤ/n `  N )
2 rpvmasum.l . . 3  |-  L  =  ( ZRHom `  Z
)
3 rpvmasum.a . . 3  |-  ( ph  ->  N  e.  NN )
4 rpvmasum.g . . 3  |-  G  =  (DChr `  N )
5 rpvmasum.d . . 3  |-  D  =  ( Base `  G
)
6 rpvmasum.1 . . 3  |-  .1.  =  ( 0g `  G )
7 dchrisum.b . . 3  |-  ( ph  ->  X  e.  D )
8 dchrisum.n1 . . 3  |-  ( ph  ->  X  =/=  .1.  )
9 oveq2 5953 . . 3  |-  ( n  =  x  ->  (
1  /  n )  =  ( 1  /  x ) )
10 1nn 9847 . . . 4  |-  1  e.  NN
1110a1i 10 . . 3  |-  ( ph  ->  1  e.  NN )
12 rpreccl 10469 . . . . 5  |-  ( n  e.  RR+  ->  ( 1  /  n )  e.  RR+ )
1312adantl 452 . . . 4  |-  ( (
ph  /\  n  e.  RR+ )  ->  ( 1  /  n )  e.  RR+ )
1413rpred 10482 . . 3  |-  ( (
ph  /\  n  e.  RR+ )  ->  ( 1  /  n )  e.  RR )
15 simp3r 984 . . . 4  |-  ( (
ph  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  (
1  <_  n  /\  n  <_  x ) )  ->  n  <_  x
)
16 rpregt0 10459 . . . . . 6  |-  ( n  e.  RR+  ->  ( n  e.  RR  /\  0  <  n ) )
17 rpregt0 10459 . . . . . 6  |-  ( x  e.  RR+  ->  ( x  e.  RR  /\  0  <  x ) )
18 lerec 9728 . . . . . 6  |-  ( ( ( n  e.  RR  /\  0  <  n )  /\  ( x  e.  RR  /\  0  < 
x ) )  -> 
( n  <_  x  <->  ( 1  /  x )  <_  ( 1  /  n ) ) )
1916, 17, 18syl2an 463 . . . . 5  |-  ( ( n  e.  RR+  /\  x  e.  RR+ )  ->  (
n  <_  x  <->  ( 1  /  x )  <_ 
( 1  /  n
) ) )
20193ad2ant2 977 . . . 4  |-  ( (
ph  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  (
1  <_  n  /\  n  <_  x ) )  ->  ( n  <_  x 
<->  ( 1  /  x
)  <_  ( 1  /  n ) ) )
2115, 20mpbid 201 . . 3  |-  ( (
ph  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  (
1  <_  n  /\  n  <_  x ) )  ->  ( 1  /  x )  <_  (
1  /  n ) )
22 ax-1cn 8885 . . . 4  |-  1  e.  CC
23 divrcnv 12408 . . . 4  |-  ( 1  e.  CC  ->  (
n  e.  RR+  |->  ( 1  /  n ) )  ~~> r  0 )
2422, 23mp1i 11 . . 3  |-  ( ph  ->  ( n  e.  RR+  |->  ( 1  /  n
) )  ~~> r  0 )
25 fveq2 5608 . . . . . 6  |-  ( a  =  n  ->  ( L `  a )  =  ( L `  n ) )
2625fveq2d 5612 . . . . 5  |-  ( a  =  n  ->  ( X `  ( L `  a ) )  =  ( X `  ( L `  n )
) )
27 oveq2 5953 . . . . 5  |-  ( a  =  n  ->  (
1  /  a )  =  ( 1  /  n ) )
2826, 27oveq12d 5963 . . . 4  |-  ( a  =  n  ->  (
( X `  ( L `  a )
)  x.  ( 1  /  a ) )  =  ( ( X `
 ( L `  n ) )  x.  ( 1  /  n
) ) )
2928cbvmptv 4192 . . 3  |-  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  x.  ( 1  / 
a ) ) )  =  ( n  e.  NN  |->  ( ( X `
 ( L `  n ) )  x.  ( 1  /  n
) ) )
301, 2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 21, 24, 29dchrisum 20753 . 2  |-  ( ph  ->  E. t E. c  e.  ( 0 [,)  +oo ) (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  x.  ( 1  /  a ) ) ) )  ~~>  t  /\  A. x  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  x.  ( 1  /  a ) ) ) ) `  ( |_ `  x ) )  -  t ) )  <_  ( c  x.  ( 1  /  x
) ) ) )
317adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  X  e.  D )
32 nnz 10137 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  n  e.  ZZ )
3332adantl 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  n  e.  ZZ )
344, 1, 5, 2, 31, 33dchrzrhcl 20596 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ( X `
 ( L `  n ) )  e.  CC )
35 nncn 9844 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  n  e.  CC )
3635adantl 452 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  n  e.  CC )
37 nnne0 9868 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  n  =/=  0 )
3837adantl 452 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  n  =/=  0 )
3934, 36, 38divrecd 9629 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( X `  ( L `
 n ) )  /  n )  =  ( ( X `  ( L `  n ) )  x.  ( 1  /  n ) ) )
4039mpteq2dva 4187 . . . . . . . . 9  |-  ( ph  ->  ( n  e.  NN  |->  ( ( X `  ( L `  n ) )  /  n ) )  =  ( n  e.  NN  |->  ( ( X `  ( L `
 n ) )  x.  ( 1  /  n ) ) ) )
41 dchrisumn0.f . . . . . . . . . 10  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  a ) )
42 id 19 . . . . . . . . . . . 12  |-  ( a  =  n  ->  a  =  n )
4326, 42oveq12d 5963 . . . . . . . . . . 11  |-  ( a  =  n  ->  (
( X `  ( L `  a )
)  /  a )  =  ( ( X `
 ( L `  n ) )  /  n ) )
4443cbvmptv 4192 . . . . . . . . . 10  |-  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  /  a ) )  =  ( n  e.  NN  |->  ( ( X `
 ( L `  n ) )  /  n ) )
4541, 44eqtri 2378 . . . . . . . . 9  |-  F  =  ( n  e.  NN  |->  ( ( X `  ( L `  n ) )  /  n ) )
4640, 45, 293eqtr4g 2415 . . . . . . . 8  |-  ( ph  ->  F  =  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  x.  ( 1  / 
a ) ) ) )
4746adantr 451 . . . . . . 7  |-  ( (
ph  /\  c  e.  ( 0 [,)  +oo ) )  ->  F  =  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  x.  ( 1  /  a
) ) ) )
4847seqeq3d 11146 . . . . . 6  |-  ( (
ph  /\  c  e.  ( 0 [,)  +oo ) )  ->  seq  1 (  +  ,  F )  =  seq  1 (  +  , 
( a  e.  NN  |->  ( ( X `  ( L `  a ) )  x.  ( 1  /  a ) ) ) ) )
4948breq1d 4114 . . . . 5  |-  ( (
ph  /\  c  e.  ( 0 [,)  +oo ) )  ->  (  seq  1 (  +  ,  F )  ~~>  t  <->  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  x.  ( 1  /  a ) ) ) )  ~~>  t ) )
50 fveq2 5608 . . . . . . . . . . 11  |-  ( y  =  x  ->  ( |_ `  y )  =  ( |_ `  x
) )
5150fveq2d 5612 . . . . . . . . . 10  |-  ( y  =  x  ->  (  seq  1 (  +  ,  F ) `  ( |_ `  y ) )  =  (  seq  1
(  +  ,  F
) `  ( |_ `  x ) ) )
5251oveq1d 5960 . . . . . . . . 9  |-  ( y  =  x  ->  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  y ) )  -  t )  =  ( (  seq  1 (  +  ,  F ) `
 ( |_ `  x ) )  -  t ) )
5352fveq2d 5612 . . . . . . . 8  |-  ( y  =  x  ->  ( abs `  ( (  seq  1 (  +  ,  F ) `  ( |_ `  y ) )  -  t ) )  =  ( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  x ) )  -  t ) ) )
54 oveq2 5953 . . . . . . . 8  |-  ( y  =  x  ->  (
c  /  y )  =  ( c  /  x ) )
5553, 54breq12d 4117 . . . . . . 7  |-  ( y  =  x  ->  (
( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
)  <->  ( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  x ) )  -  t ) )  <_ 
( c  /  x
) ) )
5655cbvralv 2840 . . . . . 6  |-  ( A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
)  <->  A. x  e.  ( 1 [,)  +oo )
( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  x ) )  -  t ) )  <_ 
( c  /  x
) )
5746seqeq3d 11146 . . . . . . . . . . . 12  |-  ( ph  ->  seq  1 (  +  ,  F )  =  seq  1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  x.  ( 1  /  a
) ) ) ) )
5857fveq1d 5610 . . . . . . . . . . 11  |-  ( ph  ->  (  seq  1 (  +  ,  F ) `
 ( |_ `  x ) )  =  (  seq  1 (  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  x.  ( 1  / 
a ) ) ) ) `  ( |_
`  x ) ) )
5958oveq1d 5960 . . . . . . . . . 10  |-  ( ph  ->  ( (  seq  1
(  +  ,  F
) `  ( |_ `  x ) )  -  t )  =  ( (  seq  1 (  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  x.  ( 1  / 
a ) ) ) ) `  ( |_
`  x ) )  -  t ) )
6059fveq2d 5612 . . . . . . . . 9  |-  ( ph  ->  ( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  x ) )  -  t ) )  =  ( abs `  (
(  seq  1 (  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  x.  ( 1  / 
a ) ) ) ) `  ( |_
`  x ) )  -  t ) ) )
6160ad2antrr 706 . . . . . . . 8  |-  ( ( ( ph  /\  c  e.  ( 0 [,)  +oo ) )  /\  x  e.  ( 1 [,)  +oo ) )  ->  ( abs `  ( (  seq  1 (  +  ,  F ) `  ( |_ `  x ) )  -  t ) )  =  ( abs `  (
(  seq  1 (  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  x.  ( 1  / 
a ) ) ) ) `  ( |_
`  x ) )  -  t ) ) )
62 elrege0 10838 . . . . . . . . . . . 12  |-  ( c  e.  ( 0 [,) 
+oo )  <->  ( c  e.  RR  /\  0  <_ 
c ) )
6362simplbi 446 . . . . . . . . . . 11  |-  ( c  e.  ( 0 [,) 
+oo )  ->  c  e.  RR )
6463recnd 8951 . . . . . . . . . 10  |-  ( c  e.  ( 0 [,) 
+oo )  ->  c  e.  CC )
6564ad2antlr 707 . . . . . . . . 9  |-  ( ( ( ph  /\  c  e.  ( 0 [,)  +oo ) )  /\  x  e.  ( 1 [,)  +oo ) )  ->  c  e.  CC )
66 1re 8927 . . . . . . . . . . . . 13  |-  1  e.  RR
67 elicopnf 10831 . . . . . . . . . . . . 13  |-  ( 1  e.  RR  ->  (
x  e.  ( 1 [,)  +oo )  <->  ( x  e.  RR  /\  1  <_  x ) ) )
6866, 67ax-mp 8 . . . . . . . . . . . 12  |-  ( x  e.  ( 1 [,) 
+oo )  <->  ( x  e.  RR  /\  1  <_  x ) )
6968simplbi 446 . . . . . . . . . . 11  |-  ( x  e.  ( 1 [,) 
+oo )  ->  x  e.  RR )
7069adantl 452 . . . . . . . . . 10  |-  ( ( ( ph  /\  c  e.  ( 0 [,)  +oo ) )  /\  x  e.  ( 1 [,)  +oo ) )  ->  x  e.  RR )
7170recnd 8951 . . . . . . . . 9  |-  ( ( ( ph  /\  c  e.  ( 0 [,)  +oo ) )  /\  x  e.  ( 1 [,)  +oo ) )  ->  x  e.  CC )
72 0re 8928 . . . . . . . . . . . 12  |-  0  e.  RR
7372a1i 10 . . . . . . . . . . 11  |-  ( ( ( ph  /\  c  e.  ( 0 [,)  +oo ) )  /\  x  e.  ( 1 [,)  +oo ) )  ->  0  e.  RR )
7466a1i 10 . . . . . . . . . . 11  |-  ( ( ( ph  /\  c  e.  ( 0 [,)  +oo ) )  /\  x  e.  ( 1 [,)  +oo ) )  ->  1  e.  RR )
75 0lt1 9386 . . . . . . . . . . . 12  |-  0  <  1
7675a1i 10 . . . . . . . . . . 11  |-  ( ( ( ph  /\  c  e.  ( 0 [,)  +oo ) )  /\  x  e.  ( 1 [,)  +oo ) )  ->  0  <  1 )
7768simprbi 450 . . . . . . . . . . . 12  |-  ( x  e.  ( 1 [,) 
+oo )  ->  1  <_  x )
7877adantl 452 . . . . . . . . . . 11  |-  ( ( ( ph  /\  c  e.  ( 0 [,)  +oo ) )  /\  x  e.  ( 1 [,)  +oo ) )  ->  1  <_  x )
7973, 74, 70, 76, 78ltletrd 9066 . . . . . . . . . 10  |-  ( ( ( ph  /\  c  e.  ( 0 [,)  +oo ) )  /\  x  e.  ( 1 [,)  +oo ) )  ->  0  <  x )
8079gt0ne0d 9427 . . . . . . . . 9  |-  ( ( ( ph  /\  c  e.  ( 0 [,)  +oo ) )  /\  x  e.  ( 1 [,)  +oo ) )  ->  x  =/=  0 )
8165, 71, 80divrecd 9629 . . . . . . . 8  |-  ( ( ( ph  /\  c  e.  ( 0 [,)  +oo ) )  /\  x  e.  ( 1 [,)  +oo ) )  ->  (
c  /  x )  =  ( c  x.  ( 1  /  x
) ) )
8261, 81breq12d 4117 . . . . . . 7  |-  ( ( ( ph  /\  c  e.  ( 0 [,)  +oo ) )  /\  x  e.  ( 1 [,)  +oo ) )  ->  (
( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  x ) )  -  t ) )  <_ 
( c  /  x
)  <->  ( abs `  (
(  seq  1 (  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  x.  ( 1  / 
a ) ) ) ) `  ( |_
`  x ) )  -  t ) )  <_  ( c  x.  ( 1  /  x
) ) ) )
8382ralbidva 2635 . . . . . 6  |-  ( (
ph  /\  c  e.  ( 0 [,)  +oo ) )  ->  ( A. x  e.  (
1 [,)  +oo ) ( abs `  ( (  seq  1 (  +  ,  F ) `  ( |_ `  x ) )  -  t ) )  <_  ( c  /  x )  <->  A. x  e.  ( 1 [,)  +oo ) ( abs `  (
(  seq  1 (  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  x.  ( 1  / 
a ) ) ) ) `  ( |_
`  x ) )  -  t ) )  <_  ( c  x.  ( 1  /  x
) ) ) )
8456, 83syl5bb 248 . . . . 5  |-  ( (
ph  /\  c  e.  ( 0 [,)  +oo ) )  ->  ( A. y  e.  (
1 [,)  +oo ) ( abs `  ( (  seq  1 (  +  ,  F ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  /  y )  <->  A. x  e.  ( 1 [,)  +oo ) ( abs `  (
(  seq  1 (  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  x.  ( 1  / 
a ) ) ) ) `  ( |_
`  x ) )  -  t ) )  <_  ( c  x.  ( 1  /  x
) ) ) )
8549, 84anbi12d 691 . . . 4  |-  ( (
ph  /\  c  e.  ( 0 [,)  +oo ) )  ->  (
(  seq  1 (  +  ,  F )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) )  <->  (  seq  1 (  +  , 
( a  e.  NN  |->  ( ( X `  ( L `  a ) )  x.  ( 1  /  a ) ) ) )  ~~>  t  /\  A. x  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  x.  ( 1  /  a ) ) ) ) `  ( |_ `  x ) )  -  t ) )  <_  ( c  x.  ( 1  /  x
) ) ) ) )
8685rexbidva 2636 . . 3  |-  ( ph  ->  ( E. c  e.  ( 0 [,)  +oo ) (  seq  1
(  +  ,  F
)  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) )  <->  E. c  e.  ( 0 [,)  +oo ) (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  x.  ( 1  /  a ) ) ) )  ~~>  t  /\  A. x  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  x.  ( 1  /  a ) ) ) ) `  ( |_ `  x ) )  -  t ) )  <_  ( c  x.  ( 1  /  x
) ) ) ) )
8786exbidv 1626 . 2  |-  ( ph  ->  ( E. t E. c  e.  ( 0 [,)  +oo ) (  seq  1 (  +  ,  F )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) )  <->  E. t E. c  e.  (
0 [,)  +oo ) (  seq  1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  x.  ( 1  /  a
) ) ) )  ~~>  t  /\  A. x  e.  ( 1 [,)  +oo ) ( abs `  (
(  seq  1 (  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  x.  ( 1  / 
a ) ) ) ) `  ( |_
`  x ) )  -  t ) )  <_  ( c  x.  ( 1  /  x
) ) ) ) )
8830, 87mpbird 223 1  |-  ( ph  ->  E. t E. c  e.  ( 0 [,)  +oo ) (  seq  1
(  +  ,  F
)  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934   E.wex 1541    = wceq 1642    e. wcel 1710    =/= wne 2521   A.wral 2619   E.wrex 2620   class class class wbr 4104    e. cmpt 4158   ` cfv 5337  (class class class)co 5945   CCcc 8825   RRcr 8826   0cc0 8827   1c1 8828    + caddc 8830    x. cmul 8832    +oocpnf 8954    < clt 8957    <_ cle 8958    - cmin 9127    / cdiv 9513   NNcn 9836   ZZcz 10116   RR+crp 10446   [,)cico 10750   |_cfl 11016    seq cseq 11138   abscabs 11815    ~~> cli 12054    ~~> r crli 12055   Basecbs 13245   0gc0g 13499   ZRHomczrh 16557  ℤ/nczn 16560  DChrcdchr 20583
This theorem is referenced by:  rpvmasum2  20773  dchrisum0re  20774  dchrisum0lem3  20780  dchrmusum  20785  dchrvmasum  20786
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4212  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594  ax-inf2 7432  ax-cnex 8883  ax-resscn 8884  ax-1cn 8885  ax-icn 8886  ax-addcl 8887  ax-addrcl 8888  ax-mulcl 8889  ax-mulrcl 8890  ax-mulcom 8891  ax-addass 8892  ax-mulass 8893  ax-distr 8894  ax-i2m1 8895  ax-1ne0 8896  ax-1rid 8897  ax-rnegex 8898  ax-rrecex 8899  ax-cnre 8900  ax-pre-lttri 8901  ax-pre-lttrn 8902  ax-pre-ltadd 8903  ax-pre-mulgt0 8904  ax-pre-sup 8905  ax-addf 8906  ax-mulf 8907
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3909  df-int 3944  df-iun 3988  df-br 4105  df-opab 4159  df-mpt 4160  df-tr 4195  df-eprel 4387  df-id 4391  df-po 4396  df-so 4397  df-fr 4434  df-se 4435  df-we 4436  df-ord 4477  df-on 4478  df-lim 4479  df-suc 4480  df-om 4739  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-isom 5346  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-of 6165  df-1st 6209  df-2nd 6210  df-tpos 6321  df-riota 6391  df-recs 6475  df-rdg 6510  df-1o 6566  df-oadd 6570  df-er 6747  df-ec 6749  df-qs 6753  df-map 6862  df-pm 6863  df-en 6952  df-dom 6953  df-sdom 6954  df-fin 6955  df-sup 7284  df-oi 7315  df-card 7662  df-pnf 8959  df-mnf 8960  df-xr 8961  df-ltxr 8962  df-le 8963  df-sub 9129  df-neg 9130  df-div 9514  df-nn 9837  df-2 9894  df-3 9895  df-4 9896  df-5 9897  df-6 9898  df-7 9899  df-8 9900  df-9 9901  df-10 9902  df-n0 10058  df-z 10117  df-dec 10217  df-uz 10323  df-rp 10447  df-ico 10754  df-fz 10875  df-fzo 10963  df-fl 11017  df-mod 11066  df-seq 11139  df-exp 11198  df-hash 11431  df-cj 11680  df-re 11681  df-im 11682  df-sqr 11816  df-abs 11817  df-limsup 12041  df-clim 12058  df-rlim 12059  df-sum 12256  df-dvds 12629  df-gcd 12783  df-phi 12931  df-struct 13247  df-ndx 13248  df-slot 13249  df-base 13250  df-sets 13251  df-ress 13252  df-plusg 13318  df-mulr 13319  df-starv 13320  df-sca 13321  df-vsca 13322  df-tset 13324  df-ple 13325  df-ds 13327  df-unif 13328  df-0g 13503  df-imas 13510  df-divs 13511  df-mnd 14466  df-mhm 14514  df-grp 14588  df-minusg 14589  df-sbg 14590  df-mulg 14591  df-subg 14717  df-nsg 14718  df-eqg 14719  df-ghm 14780  df-cmn 15190  df-abl 15191  df-mgp 15425  df-rng 15439  df-cring 15440  df-ur 15441  df-oppr 15504  df-dvdsr 15522  df-unit 15523  df-invr 15553  df-rnghom 15595  df-subrg 15642  df-lmod 15728  df-lss 15789  df-lsp 15828  df-sra 16024  df-rgmod 16025  df-lidl 16026  df-rsp 16027  df-2idl 16083  df-cnfld 16483  df-zrh 16561  df-zn 16564  df-dchr 20584
  Copyright terms: Public domain W3C validator