MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrsum Unicode version

Theorem dchrsum 20435
Description: An orthogonality relation for Dirichlet characters: the sum of all the values of a Dirichlet character  X is  0 if  X is non-principal and  phi ( n ) otherwise. Part of Theorem 6.5.1 of [Shapiro] p. 230. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchrsum.g  |-  G  =  (DChr `  N )
dchrsum.z  |-  Z  =  (ℤ/n `  N )
dchrsum.d  |-  D  =  ( Base `  G
)
dchrsum.1  |-  .1.  =  ( 0g `  G )
dchrsum.x  |-  ( ph  ->  X  e.  D )
dchrsum.b  |-  B  =  ( Base `  Z
)
Assertion
Ref Expression
dchrsum  |-  ( ph  -> 
sum_ a  e.  B  ( X `  a )  =  if ( X  =  .1.  ,  ( phi `  N ) ,  0 ) )
Distinct variable groups:    .1. , a    B, a    ph, a    X, a    Z, a
Allowed substitution hints:    D( a)    G( a)    N( a)

Proof of Theorem dchrsum
StepHypRef Expression
1 dchrsum.b . . . . 5  |-  B  =  ( Base `  Z
)
2 eqid 2256 . . . . 5  |-  (Unit `  Z )  =  (Unit `  Z )
31, 2unitss 15369 . . . 4  |-  (Unit `  Z )  C_  B
43a1i 12 . . 3  |-  ( ph  ->  (Unit `  Z )  C_  B )
5 dchrsum.g . . . . 5  |-  G  =  (DChr `  N )
6 dchrsum.z . . . . 5  |-  Z  =  (ℤ/n `  N )
7 dchrsum.d . . . . 5  |-  D  =  ( Base `  G
)
8 dchrsum.x . . . . 5  |-  ( ph  ->  X  e.  D )
95, 6, 7, 1, 8dchrf 20408 . . . 4  |-  ( ph  ->  X : B --> CC )
103sseli 3118 . . . 4  |-  ( a  e.  (Unit `  Z
)  ->  a  e.  B )
11 ffvelrn 5562 . . . 4  |-  ( ( X : B --> CC  /\  a  e.  B )  ->  ( X `  a
)  e.  CC )
129, 10, 11syl2an 465 . . 3  |-  ( (
ph  /\  a  e.  (Unit `  Z ) )  ->  ( X `  a )  e.  CC )
13 eldif 3104 . . . 4  |-  ( a  e.  ( B  \ 
(Unit `  Z )
)  <->  ( a  e.  B  /\  -.  a  e.  (Unit `  Z )
) )
148adantr 453 . . . . . . . 8  |-  ( (
ph  /\  a  e.  B )  ->  X  e.  D )
15 simpr 449 . . . . . . . 8  |-  ( (
ph  /\  a  e.  B )  ->  a  e.  B )
165, 6, 7, 1, 2, 14, 15dchrn0 20416 . . . . . . 7  |-  ( (
ph  /\  a  e.  B )  ->  (
( X `  a
)  =/=  0  <->  a  e.  (Unit `  Z )
) )
1716biimpd 200 . . . . . 6  |-  ( (
ph  /\  a  e.  B )  ->  (
( X `  a
)  =/=  0  -> 
a  e.  (Unit `  Z ) ) )
1817necon1bd 2487 . . . . 5  |-  ( (
ph  /\  a  e.  B )  ->  ( -.  a  e.  (Unit `  Z )  ->  ( X `  a )  =  0 ) )
1918impr 605 . . . 4  |-  ( (
ph  /\  ( a  e.  B  /\  -.  a  e.  (Unit `  Z )
) )  ->  ( X `  a )  =  0 )
2013, 19sylan2b 463 . . 3  |-  ( (
ph  /\  a  e.  ( B  \  (Unit `  Z ) ) )  ->  ( X `  a )  =  0 )
215, 7dchrrcl 20406 . . . 4  |-  ( X  e.  D  ->  N  e.  NN )
226, 1znfi 16440 . . . 4  |-  ( N  e.  NN  ->  B  e.  Fin )
238, 21, 223syl 20 . . 3  |-  ( ph  ->  B  e.  Fin )
244, 12, 20, 23fsumss 12128 . 2  |-  ( ph  -> 
sum_ a  e.  (Unit `  Z ) ( X `
 a )  = 
sum_ a  e.  B  ( X `  a ) )
25 dchrsum.1 . . 3  |-  .1.  =  ( 0g `  G )
265, 6, 7, 25, 8, 2dchrsum2 20434 . 2  |-  ( ph  -> 
sum_ a  e.  (Unit `  Z ) ( X `
 a )  =  if ( X  =  .1.  ,  ( phi `  N ) ,  0 ) )
2724, 26eqtr3d 2290 1  |-  ( ph  -> 
sum_ a  e.  B  ( X `  a )  =  if ( X  =  .1.  ,  ( phi `  N ) ,  0 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2419    \ cdif 3091    C_ wss 3094   ifcif 3506   -->wf 4634   ` cfv 4638   Fincfn 6796   CCcc 8668   0cc0 8670   NNcn 9679   sum_csu 12088   phicphi 12759   Basecbs 13075   0gc0g 13327  Unitcui 15348  ℤ/nczn 16381  DChrcdchr 20398
This theorem is referenced by:  dchrhash  20437  dchr2sum  20439  dchrisumlem1  20565
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-inf2 7275  ax-cnex 8726  ax-resscn 8727  ax-1cn 8728  ax-icn 8729  ax-addcl 8730  ax-addrcl 8731  ax-mulcl 8732  ax-mulrcl 8733  ax-mulcom 8734  ax-addass 8735  ax-mulass 8736  ax-distr 8737  ax-i2m1 8738  ax-1ne0 8739  ax-1rid 8740  ax-rnegex 8741  ax-rrecex 8742  ax-cnre 8743  ax-pre-lttri 8744  ax-pre-lttrn 8745  ax-pre-ltadd 8746  ax-pre-mulgt0 8747  ax-pre-sup 8748  ax-addf 8749  ax-mulf 8750
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-int 3804  df-iun 3848  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-se 4290  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-isom 4655  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-of 5977  df-1st 6021  df-2nd 6022  df-tpos 6133  df-iota 6190  df-riota 6237  df-recs 6321  df-rdg 6356  df-1o 6412  df-oadd 6416  df-er 6593  df-ec 6595  df-qs 6599  df-map 6707  df-en 6797  df-dom 6798  df-sdom 6799  df-fin 6800  df-sup 7127  df-oi 7158  df-card 7505  df-pnf 8802  df-mnf 8803  df-xr 8804  df-ltxr 8805  df-le 8806  df-sub 8972  df-neg 8973  df-div 9357  df-n 9680  df-2 9737  df-3 9738  df-4 9739  df-5 9740  df-6 9741  df-7 9742  df-8 9743  df-9 9744  df-10 9745  df-n0 9898  df-z 9957  df-dec 10057  df-uz 10163  df-rp 10287  df-fz 10714  df-fzo 10802  df-fl 10856  df-mod 10905  df-seq 10978  df-exp 11036  df-hash 11269  df-cj 11514  df-re 11515  df-im 11516  df-sqr 11650  df-abs 11651  df-clim 11892  df-sum 12089  df-divides 12459  df-gcd 12613  df-phi 12761  df-struct 13077  df-ndx 13078  df-slot 13079  df-base 13080  df-sets 13081  df-ress 13082  df-plusg 13148  df-mulr 13149  df-starv 13150  df-sca 13151  df-vsca 13152  df-tset 13154  df-ple 13155  df-ds 13157  df-0g 13331  df-imas 13338  df-divs 13339  df-mnd 14294  df-mhm 14342  df-grp 14416  df-minusg 14417  df-sbg 14418  df-mulg 14419  df-subg 14545  df-nsg 14546  df-eqg 14547  df-ghm 14608  df-cmn 15018  df-abl 15019  df-mgp 15253  df-ring 15267  df-cring 15268  df-ur 15269  df-oppr 15332  df-dvdsr 15350  df-unit 15351  df-invr 15381  df-rnghom 15423  df-subrg 15470  df-lmod 15556  df-lss 15617  df-lsp 15656  df-sra 15852  df-rgmod 15853  df-lidl 15854  df-rsp 15855  df-2idl 15911  df-cnfld 16305  df-zrh 16382  df-zn 16385  df-dchr 20399
  Copyright terms: Public domain W3C validator