MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrsum2 Unicode version

Theorem dchrsum2 20502
Description: An orthogonality relation for Dirichlet characters: the sum of all the values of a Dirichlet character  X is  0 if  X is non-principal and  phi ( n ) otherwise. Part of Theorem 6.5.1 of [Shapiro] p. 230. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchrsum.g  |-  G  =  (DChr `  N )
dchrsum.z  |-  Z  =  (ℤ/n `  N )
dchrsum.d  |-  D  =  ( Base `  G
)
dchrsum.1  |-  .1.  =  ( 0g `  G )
dchrsum.x  |-  ( ph  ->  X  e.  D )
dchrsum2.u  |-  U  =  (Unit `  Z )
Assertion
Ref Expression
dchrsum2  |-  ( ph  -> 
sum_ a  e.  U  ( X `  a )  =  if ( X  =  .1.  ,  ( phi `  N ) ,  0 ) )
Distinct variable groups:    .1. , a    ph, a    U, a    X, a    Z, a
Dummy variables  k  x  b  c are mutually distinct and distinct from all other variables.
Allowed substitution hints:    D( a)    G( a)    N( a)

Proof of Theorem dchrsum2
StepHypRef Expression
1 eqeq2 2294 . 2  |-  ( ( phi `  N )  =  if ( X  =  .1.  ,  ( phi `  N ) ,  0 )  -> 
( sum_ a  e.  U  ( X `  a )  =  ( phi `  N )  <->  sum_ a  e.  U  ( X `  a )  =  if ( X  =  .1. 
,  ( phi `  N ) ,  0 ) ) )
2 eqeq2 2294 . 2  |-  ( 0  =  if ( X  =  .1.  ,  ( phi `  N ) ,  0 )  -> 
( sum_ a  e.  U  ( X `  a )  =  0  <->  sum_ a  e.  U  ( X `  a )  =  if ( X  =  .1. 
,  ( phi `  N ) ,  0 ) ) )
3 fveq1 5485 . . . . . 6  |-  ( X  =  .1.  ->  ( X `  a )  =  (  .1.  `  a
) )
4 dchrsum.g . . . . . . 7  |-  G  =  (DChr `  N )
5 dchrsum.z . . . . . . 7  |-  Z  =  (ℤ/n `  N )
6 dchrsum.1 . . . . . . 7  |-  .1.  =  ( 0g `  G )
7 dchrsum2.u . . . . . . 7  |-  U  =  (Unit `  Z )
8 dchrsum.x . . . . . . . . 9  |-  ( ph  ->  X  e.  D )
9 dchrsum.d . . . . . . . . . 10  |-  D  =  ( Base `  G
)
104, 9dchrrcl 20474 . . . . . . . . 9  |-  ( X  e.  D  ->  N  e.  NN )
118, 10syl 17 . . . . . . . 8  |-  ( ph  ->  N  e.  NN )
1211adantr 453 . . . . . . 7  |-  ( (
ph  /\  a  e.  U )  ->  N  e.  NN )
13 simpr 449 . . . . . . 7  |-  ( (
ph  /\  a  e.  U )  ->  a  e.  U )
144, 5, 6, 7, 12, 13dchr1 20491 . . . . . 6  |-  ( (
ph  /\  a  e.  U )  ->  (  .1.  `  a )  =  1 )
153, 14sylan9eqr 2339 . . . . 5  |-  ( ( ( ph  /\  a  e.  U )  /\  X  =  .1.  )  ->  ( X `  a )  =  1 )
1615an32s 781 . . . 4  |-  ( ( ( ph  /\  X  =  .1.  )  /\  a  e.  U )  ->  ( X `  a )  =  1 )
1716sumeq2dv 12171 . . 3  |-  ( (
ph  /\  X  =  .1.  )  ->  sum_ a  e.  U  ( X `  a )  =  sum_ a  e.  U  1
)
185, 7znunithash 16513 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( # `
 U )  =  ( phi `  N
) )
1911, 18syl 17 . . . . . . . 8  |-  ( ph  ->  ( # `  U
)  =  ( phi `  N ) )
2011phicld 12835 . . . . . . . . 9  |-  ( ph  ->  ( phi `  N
)  e.  NN )
2120nnnn0d 10014 . . . . . . . 8  |-  ( ph  ->  ( phi `  N
)  e.  NN0 )
2219, 21eqeltrd 2359 . . . . . . 7  |-  ( ph  ->  ( # `  U
)  e.  NN0 )
23 fvex 5500 . . . . . . . . 9  |-  (Unit `  Z )  e.  _V
247, 23eqeltri 2355 . . . . . . . 8  |-  U  e. 
_V
25 hashclb 11347 . . . . . . . 8  |-  ( U  e.  _V  ->  ( U  e.  Fin  <->  ( # `  U
)  e.  NN0 )
)
2624, 25ax-mp 10 . . . . . . 7  |-  ( U  e.  Fin  <->  ( # `  U
)  e.  NN0 )
2722, 26sylibr 205 . . . . . 6  |-  ( ph  ->  U  e.  Fin )
28 ax-1cn 8791 . . . . . 6  |-  1  e.  CC
29 fsumconst 12247 . . . . . 6  |-  ( ( U  e.  Fin  /\  1  e.  CC )  -> 
sum_ a  e.  U 
1  =  ( (
# `  U )  x.  1 ) )
3027, 28, 29sylancl 645 . . . . 5  |-  ( ph  -> 
sum_ a  e.  U 
1  =  ( (
# `  U )  x.  1 ) )
3119oveq1d 5835 . . . . 5  |-  ( ph  ->  ( ( # `  U
)  x.  1 )  =  ( ( phi `  N )  x.  1 ) )
3220nncnd 9758 . . . . . 6  |-  ( ph  ->  ( phi `  N
)  e.  CC )
3332mulid1d 8848 . . . . 5  |-  ( ph  ->  ( ( phi `  N )  x.  1 )  =  ( phi `  N ) )
3430, 31, 333eqtrd 2321 . . . 4  |-  ( ph  -> 
sum_ a  e.  U 
1  =  ( phi `  N ) )
3534adantr 453 . . 3  |-  ( (
ph  /\  X  =  .1.  )  ->  sum_ a  e.  U  1  =  ( phi `  N ) )
3617, 35eqtrd 2317 . 2  |-  ( (
ph  /\  X  =  .1.  )  ->  sum_ a  e.  U  ( X `  a )  =  ( phi `  N ) )
374dchrabl 20488 . . . . . . . . . 10  |-  ( N  e.  NN  ->  G  e.  Abel )
3811, 37syl 17 . . . . . . . . 9  |-  ( ph  ->  G  e.  Abel )
39 ablgrp 15089 . . . . . . . . 9  |-  ( G  e.  Abel  ->  G  e. 
Grp )
4038, 39syl 17 . . . . . . . 8  |-  ( ph  ->  G  e.  Grp )
419, 6grpidcl 14505 . . . . . . . 8  |-  ( G  e.  Grp  ->  .1.  e.  D )
4240, 41syl 17 . . . . . . 7  |-  ( ph  ->  .1.  e.  D )
434, 5, 9, 7, 8, 42dchreq 20492 . . . . . 6  |-  ( ph  ->  ( X  =  .1.  <->  A. k  e.  U  ( X `  k )  =  (  .1.  `  k ) ) )
4443notbid 287 . . . . 5  |-  ( ph  ->  ( -.  X  =  .1.  <->  -.  A. k  e.  U  ( X `  k )  =  (  .1.  `  k )
) )
45 rexnal 2556 . . . . 5  |-  ( E. k  e.  U  -.  ( X `  k )  =  (  .1.  `  k )  <->  -.  A. k  e.  U  ( X `  k )  =  (  .1.  `  k )
)
4644, 45syl6bbr 256 . . . 4  |-  ( ph  ->  ( -.  X  =  .1.  <->  E. k  e.  U  -.  ( X `  k
)  =  (  .1.  `  k ) ) )
47 df-ne 2450 . . . . . 6  |-  ( ( X `  k )  =/=  (  .1.  `  k )  <->  -.  ( X `  k )  =  (  .1.  `  k
) )
4811adantr 453 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  U )  ->  N  e.  NN )
49 simpr 449 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  U )  ->  k  e.  U )
504, 5, 6, 7, 48, 49dchr1 20491 . . . . . . . 8  |-  ( (
ph  /\  k  e.  U )  ->  (  .1.  `  k )  =  1 )
5150neeq2d 2462 . . . . . . 7  |-  ( (
ph  /\  k  e.  U )  ->  (
( X `  k
)  =/=  (  .1.  `  k )  <->  ( X `  k )  =/=  1
) )
52 oveq2 5828 . . . . . . . . . . . . . . . 16  |-  ( x  =  a  ->  (
k ( .r `  Z ) x )  =  ( k ( .r `  Z ) a ) )
5352fveq2d 5490 . . . . . . . . . . . . . . 15  |-  ( x  =  a  ->  ( X `  ( k
( .r `  Z
) x ) )  =  ( X `  ( k ( .r
`  Z ) a ) ) )
5453cbvsumv 12164 . . . . . . . . . . . . . 14  |-  sum_ x  e.  U  ( X `  ( k ( .r
`  Z ) x ) )  =  sum_ a  e.  U  ( X `  ( k
( .r `  Z
) a ) )
554, 5, 9dchrmhm 20475 . . . . . . . . . . . . . . . . . 18  |-  D  C_  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) )
5655, 8sseldi 3180 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
) )
5756ad2antrr 708 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
k  e.  U  /\  ( X `  k )  =/=  1 ) )  /\  a  e.  U
)  ->  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) ) )
58 eqid 2285 . . . . . . . . . . . . . . . . . . 19  |-  ( Base `  Z )  =  (
Base `  Z )
5958, 7unitss 15437 . . . . . . . . . . . . . . . . . 18  |-  U  C_  ( Base `  Z )
60 simprl 734 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( k  e.  U  /\  ( X `  k )  =/=  1 ) )  -> 
k  e.  U )
6159, 60sseldi 3180 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( k  e.  U  /\  ( X `  k )  =/=  1 ) )  -> 
k  e.  ( Base `  Z ) )
6261adantr 453 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
k  e.  U  /\  ( X `  k )  =/=  1 ) )  /\  a  e.  U
)  ->  k  e.  ( Base `  Z )
)
6359sseli 3178 . . . . . . . . . . . . . . . . 17  |-  ( a  e.  U  ->  a  e.  ( Base `  Z
) )
6463adantl 454 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
k  e.  U  /\  ( X `  k )  =/=  1 ) )  /\  a  e.  U
)  ->  a  e.  ( Base `  Z )
)
65 eqid 2285 . . . . . . . . . . . . . . . . . 18  |-  (mulGrp `  Z )  =  (mulGrp `  Z )
6665, 58mgpbas 15326 . . . . . . . . . . . . . . . . 17  |-  ( Base `  Z )  =  (
Base `  (mulGrp `  Z
) )
67 eqid 2285 . . . . . . . . . . . . . . . . . 18  |-  ( .r
`  Z )  =  ( .r `  Z
)
6865, 67mgpplusg 15324 . . . . . . . . . . . . . . . . 17  |-  ( .r
`  Z )  =  ( +g  `  (mulGrp `  Z ) )
69 eqid 2285 . . . . . . . . . . . . . . . . . 18  |-  (mulGrp ` fld )  =  (mulGrp ` fld )
70 cnfldmul 16380 . . . . . . . . . . . . . . . . . 18  |-  x.  =  ( .r ` fld )
7169, 70mgpplusg 15324 . . . . . . . . . . . . . . . . 17  |-  x.  =  ( +g  `  (mulGrp ` fld )
)
7266, 68, 71mhmlin 14417 . . . . . . . . . . . . . . . 16  |-  ( ( X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
)  /\  k  e.  ( Base `  Z )  /\  a  e.  ( Base `  Z ) )  ->  ( X `  ( k ( .r
`  Z ) a ) )  =  ( ( X `  k
)  x.  ( X `
 a ) ) )
7357, 62, 64, 72syl3anc 1184 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
k  e.  U  /\  ( X `  k )  =/=  1 ) )  /\  a  e.  U
)  ->  ( X `  ( k ( .r
`  Z ) a ) )  =  ( ( X `  k
)  x.  ( X `
 a ) ) )
7473sumeq2dv 12171 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( k  e.  U  /\  ( X `  k )  =/=  1 ) )  ->  sum_ a  e.  U  ( X `  ( k ( .r `  Z
) a ) )  =  sum_ a  e.  U  ( ( X `  k )  x.  ( X `  a )
) )
7554, 74syl5eq 2329 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( k  e.  U  /\  ( X `  k )  =/=  1 ) )  ->  sum_ x  e.  U  ( X `  ( k ( .r `  Z
) x ) )  =  sum_ a  e.  U  ( ( X `  k )  x.  ( X `  a )
) )
76 fveq2 5486 . . . . . . . . . . . . . 14  |-  ( a  =  ( k ( .r `  Z ) x )  ->  ( X `  a )  =  ( X `  ( k ( .r
`  Z ) x ) ) )
7727adantr 453 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( k  e.  U  /\  ( X `  k )  =/=  1 ) )  ->  U  e.  Fin )
7811nnnn0d 10014 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  N  e.  NN0 )
795zncrng 16493 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  NN0  ->  Z  e. 
CRing )
8078, 79syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  Z  e.  CRing )
81 crngrng 15346 . . . . . . . . . . . . . . . . . 18  |-  ( Z  e.  CRing  ->  Z  e.  Ring )
8280, 81syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  Z  e.  Ring )
83 eqid 2285 . . . . . . . . . . . . . . . . . 18  |-  ( (mulGrp `  Z )s  U )  =  ( (mulGrp `  Z )s  U
)
847, 83unitgrp 15444 . . . . . . . . . . . . . . . . 17  |-  ( Z  e.  Ring  ->  ( (mulGrp `  Z )s  U )  e.  Grp )
8582, 84syl 17 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( (mulGrp `  Z
)s 
U )  e.  Grp )
8685adantr 453 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( k  e.  U  /\  ( X `  k )  =/=  1 ) )  -> 
( (mulGrp `  Z
)s 
U )  e.  Grp )
87 eqid 2285 . . . . . . . . . . . . . . . 16  |-  ( b  e.  U  |->  ( c  e.  U  |->  ( b ( .r `  Z
) c ) ) )  =  ( b  e.  U  |->  ( c  e.  U  |->  ( b ( .r `  Z
) c ) ) )
887, 83unitgrpbas 15443 . . . . . . . . . . . . . . . 16  |-  U  =  ( Base `  (
(mulGrp `  Z )s  U
) )
8983, 68ressplusg 13245 . . . . . . . . . . . . . . . . 17  |-  ( U  e.  _V  ->  ( .r `  Z )  =  ( +g  `  (
(mulGrp `  Z )s  U
) ) )
9024, 89ax-mp 10 . . . . . . . . . . . . . . . 16  |-  ( .r
`  Z )  =  ( +g  `  (
(mulGrp `  Z )s  U
) )
9187, 88, 90grplactf1o 14560 . . . . . . . . . . . . . . 15  |-  ( ( ( (mulGrp `  Z
)s 
U )  e.  Grp  /\  k  e.  U )  ->  ( ( b  e.  U  |->  ( c  e.  U  |->  ( b ( .r `  Z
) c ) ) ) `  k ) : U -1-1-onto-> U )
9286, 60, 91syl2anc 644 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( k  e.  U  /\  ( X `  k )  =/=  1 ) )  -> 
( ( b  e.  U  |->  ( c  e.  U  |->  ( b ( .r `  Z ) c ) ) ) `
 k ) : U -1-1-onto-> U )
9387, 88grplactval 14558 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  U  /\  x  e.  U )  ->  ( ( ( b  e.  U  |->  ( c  e.  U  |->  ( b ( .r `  Z
) c ) ) ) `  k ) `
 x )  =  ( k ( .r
`  Z ) x ) )
9460, 93sylan 459 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
k  e.  U  /\  ( X `  k )  =/=  1 ) )  /\  x  e.  U
)  ->  ( (
( b  e.  U  |->  ( c  e.  U  |->  ( b ( .r
`  Z ) c ) ) ) `  k ) `  x
)  =  ( k ( .r `  Z
) x ) )
954, 5, 9, 58, 8dchrf 20476 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  X : ( Base `  Z ) --> CC )
96 ffvelrn 5625 . . . . . . . . . . . . . . . 16  |-  ( ( X : ( Base `  Z ) --> CC  /\  a  e.  ( Base `  Z ) )  -> 
( X `  a
)  e.  CC )
9795, 63, 96syl2an 465 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  a  e.  U )  ->  ( X `  a )  e.  CC )
9897adantlr 697 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
k  e.  U  /\  ( X `  k )  =/=  1 ) )  /\  a  e.  U
)  ->  ( X `  a )  e.  CC )
9976, 77, 92, 94, 98fsumf1o 12191 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( k  e.  U  /\  ( X `  k )  =/=  1 ) )  ->  sum_ a  e.  U  ( X `  a )  =  sum_ x  e.  U  ( X `  ( k ( .r `  Z
) x ) ) )
10095adantr 453 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( k  e.  U  /\  ( X `  k )  =/=  1 ) )  ->  X : ( Base `  Z
) --> CC )
101 ffvelrn 5625 . . . . . . . . . . . . . . 15  |-  ( ( X : ( Base `  Z ) --> CC  /\  k  e.  ( Base `  Z ) )  -> 
( X `  k
)  e.  CC )
102100, 61, 101syl2anc 644 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( k  e.  U  /\  ( X `  k )  =/=  1 ) )  -> 
( X `  k
)  e.  CC )
10377, 102, 98fsummulc2 12241 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( k  e.  U  /\  ( X `  k )  =/=  1 ) )  -> 
( ( X `  k )  x.  sum_ a  e.  U  ( X `  a )
)  =  sum_ a  e.  U  ( ( X `  k )  x.  ( X `  a
) ) )
10475, 99, 1033eqtr4rd 2328 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( k  e.  U  /\  ( X `  k )  =/=  1 ) )  -> 
( ( X `  k )  x.  sum_ a  e.  U  ( X `  a )
)  =  sum_ a  e.  U  ( X `  a ) )
10577, 98fsumcl 12201 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( k  e.  U  /\  ( X `  k )  =/=  1 ) )  ->  sum_ a  e.  U  ( X `  a )  e.  CC )
106105mulid2d 8849 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( k  e.  U  /\  ( X `  k )  =/=  1 ) )  -> 
( 1  x.  sum_ a  e.  U  ( X `  a )
)  =  sum_ a  e.  U  ( X `  a ) )
107104, 106oveq12d 5838 . . . . . . . . . . 11  |-  ( (
ph  /\  ( k  e.  U  /\  ( X `  k )  =/=  1 ) )  -> 
( ( ( X `
 k )  x. 
sum_ a  e.  U  ( X `  a ) )  -  ( 1  x.  sum_ a  e.  U  ( X `  a ) ) )  =  (
sum_ a  e.  U  ( X `  a )  -  sum_ a  e.  U  ( X `  a ) ) )
108105subidd 9141 . . . . . . . . . . 11  |-  ( (
ph  /\  ( k  e.  U  /\  ( X `  k )  =/=  1 ) )  -> 
( sum_ a  e.  U  ( X `  a )  -  sum_ a  e.  U  ( X `  a ) )  =  0 )
109107, 108eqtrd 2317 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  U  /\  ( X `  k )  =/=  1 ) )  -> 
( ( ( X `
 k )  x. 
sum_ a  e.  U  ( X `  a ) )  -  ( 1  x.  sum_ a  e.  U  ( X `  a ) ) )  =  0 )
11028a1i 12 . . . . . . . . . . 11  |-  ( (
ph  /\  ( k  e.  U  /\  ( X `  k )  =/=  1 ) )  -> 
1  e.  CC )
111102, 110, 105subdird 9232 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  U  /\  ( X `  k )  =/=  1 ) )  -> 
( ( ( X `
 k )  - 
1 )  x.  sum_ a  e.  U  ( X `  a )
)  =  ( ( ( X `  k
)  x.  sum_ a  e.  U  ( X `  a ) )  -  ( 1  x.  sum_ a  e.  U  ( X `  a )
) ) )
112 subcl 9047 . . . . . . . . . . . 12  |-  ( ( ( X `  k
)  e.  CC  /\  1  e.  CC )  ->  ( ( X `  k )  -  1 )  e.  CC )
113102, 28, 112sylancl 645 . . . . . . . . . . 11  |-  ( (
ph  /\  ( k  e.  U  /\  ( X `  k )  =/=  1 ) )  -> 
( ( X `  k )  -  1 )  e.  CC )
114113mul01d 9007 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  U  /\  ( X `  k )  =/=  1 ) )  -> 
( ( ( X `
 k )  - 
1 )  x.  0 )  =  0 )
115109, 111, 1143eqtr4d 2327 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  U  /\  ( X `  k )  =/=  1 ) )  -> 
( ( ( X `
 k )  - 
1 )  x.  sum_ a  e.  U  ( X `  a )
)  =  ( ( ( X `  k
)  -  1 )  x.  0 ) )
116 0cn 8827 . . . . . . . . . . 11  |-  0  e.  CC
117116a1i 12 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  U  /\  ( X `  k )  =/=  1 ) )  -> 
0  e.  CC )
118 simprr 735 . . . . . . . . . . 11  |-  ( (
ph  /\  ( k  e.  U  /\  ( X `  k )  =/=  1 ) )  -> 
( X `  k
)  =/=  1 )
119 subeq0 9069 . . . . . . . . . . . . 13  |-  ( ( ( X `  k
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( X `
 k )  - 
1 )  =  0  <-> 
( X `  k
)  =  1 ) )
120102, 28, 119sylancl 645 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( k  e.  U  /\  ( X `  k )  =/=  1 ) )  -> 
( ( ( X `
 k )  - 
1 )  =  0  <-> 
( X `  k
)  =  1 ) )
121120necon3bid 2483 . . . . . . . . . . 11  |-  ( (
ph  /\  ( k  e.  U  /\  ( X `  k )  =/=  1 ) )  -> 
( ( ( X `
 k )  - 
1 )  =/=  0  <->  ( X `  k )  =/=  1 ) )
122118, 121mpbird 225 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  U  /\  ( X `  k )  =/=  1 ) )  -> 
( ( X `  k )  -  1 )  =/=  0 )
123105, 117, 113, 122mulcand 9397 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  U  /\  ( X `  k )  =/=  1 ) )  -> 
( ( ( ( X `  k )  -  1 )  x. 
sum_ a  e.  U  ( X `  a ) )  =  ( ( ( X `  k
)  -  1 )  x.  0 )  <->  sum_ a  e.  U  ( X `  a )  =  0 ) )
124115, 123mpbid 203 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  U  /\  ( X `  k )  =/=  1 ) )  ->  sum_ a  e.  U  ( X `  a )  =  0 )
125124expr 600 . . . . . . 7  |-  ( (
ph  /\  k  e.  U )  ->  (
( X `  k
)  =/=  1  ->  sum_ a  e.  U  ( X `  a )  =  0 ) )
12651, 125sylbid 208 . . . . . 6  |-  ( (
ph  /\  k  e.  U )  ->  (
( X `  k
)  =/=  (  .1.  `  k )  ->  sum_ a  e.  U  ( X `  a )  =  0 ) )
12747, 126syl5bir 211 . . . . 5  |-  ( (
ph  /\  k  e.  U )  ->  ( -.  ( X `  k
)  =  (  .1.  `  k )  ->  sum_ a  e.  U  ( X `  a )  =  0 ) )
128127rexlimdva 2669 . . . 4  |-  ( ph  ->  ( E. k  e.  U  -.  ( X `
 k )  =  (  .1.  `  k
)  ->  sum_ a  e.  U  ( X `  a )  =  0 ) )
12946, 128sylbid 208 . . 3  |-  ( ph  ->  ( -.  X  =  .1.  ->  sum_ a  e.  U  ( X `  a )  =  0 ) )
130129imp 420 . 2  |-  ( (
ph  /\  -.  X  =  .1.  )  ->  sum_ a  e.  U  ( X `  a )  =  0 )
1311, 2, 36, 130ifbothda 3597 1  |-  ( ph  -> 
sum_ a  e.  U  ( X `  a )  =  if ( X  =  .1.  ,  ( phi `  N ) ,  0 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1624    e. wcel 1685    =/= wne 2448   A.wral 2545   E.wrex 2546   _Vcvv 2790   ifcif 3567    e. cmpt 4079   -->wf 5218   -1-1-onto->wf1o 5221   ` cfv 5222  (class class class)co 5820   Fincfn 6859   CCcc 8731   0cc0 8733   1c1 8734    x. cmul 8738    - cmin 9033   NNcn 9742   NN0cn0 9961   #chash 11332   sum_csu 12153   phicphi 12827   Basecbs 13143   ↾s cress 13144   +g cplusg 13203   .rcmulr 13204   0gc0g 13395   Grpcgrp 14357   MndHom cmhm 14408   Abelcabel 15085  mulGrpcmgp 15320   Ringcrg 15332   CRingccrg 15333  Unitcui 15416  ℂfldccnfld 16372  ℤ/nczn 16449  DChrcdchr 20466
This theorem is referenced by:  dchrsum  20503
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7338  ax-cnex 8789  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-pre-mulgt0 8810  ax-pre-sup 8811  ax-addf 8812  ax-mulf 8813
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-fun 5224  df-fn 5225  df-f 5226  df-f1 5227  df-fo 5228  df-f1o 5229  df-fv 5230  df-isom 5231  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-of 6040  df-1st 6084  df-2nd 6085  df-tpos 6196  df-iota 6253  df-riota 6300  df-recs 6384  df-rdg 6419  df-1o 6475  df-oadd 6479  df-er 6656  df-ec 6658  df-qs 6662  df-map 6770  df-en 6860  df-dom 6861  df-sdom 6862  df-fin 6863  df-sup 7190  df-oi 7221  df-card 7568  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-sub 9035  df-neg 9036  df-div 9420  df-nn 9743  df-2 9800  df-3 9801  df-4 9802  df-5 9803  df-6 9804  df-7 9805  df-8 9806  df-9 9807  df-10 9808  df-n0 9962  df-z 10021  df-dec 10121  df-uz 10227  df-rp 10351  df-fz 10778  df-fzo 10866  df-fl 10920  df-mod 10969  df-seq 11042  df-exp 11100  df-hash 11333  df-cj 11579  df-re 11580  df-im 11581  df-sqr 11715  df-abs 11716  df-clim 11957  df-sum 12154  df-dvds 12527  df-gcd 12681  df-phi 12829  df-struct 13145  df-ndx 13146  df-slot 13147  df-base 13148  df-sets 13149  df-ress 13150  df-plusg 13216  df-mulr 13217  df-starv 13218  df-sca 13219  df-vsca 13220  df-tset 13222  df-ple 13223  df-ds 13225  df-0g 13399  df-imas 13406  df-divs 13407  df-mnd 14362  df-mhm 14410  df-grp 14484  df-minusg 14485  df-sbg 14486  df-mulg 14487  df-subg 14613  df-nsg 14614  df-eqg 14615  df-ghm 14676  df-cmn 15086  df-abl 15087  df-mgp 15321  df-rng 15335  df-cring 15336  df-ur 15337  df-oppr 15400  df-dvdsr 15418  df-unit 15419  df-invr 15449  df-rnghom 15491  df-subrg 15538  df-lmod 15624  df-lss 15685  df-lsp 15724  df-sra 15920  df-rgmod 15921  df-lidl 15922  df-rsp 15923  df-2idl 15979  df-cnfld 16373  df-zrh 16450  df-zn 16453  df-dchr 20467
  Copyright terms: Public domain W3C validator