MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrvmasum Structured version   Unicode version

Theorem dchrvmasum 21219
Description: The sum of the von Mangoldt function multiplied by a non-principal Dirichlet character, divided by  n, is bounded. Equation 9.4.8 of [Shapiro], p. 376. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
dchrmusum.g  |-  G  =  (DChr `  N )
dchrmusum.d  |-  D  =  ( Base `  G
)
dchrmusum.1  |-  .1.  =  ( 0g `  G )
dchrmusum.b  |-  ( ph  ->  X  e.  D )
dchrmusum.n1  |-  ( ph  ->  X  =/=  .1.  )
Assertion
Ref Expression
dchrvmasum  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  n )
)  x.  ( (Λ `  n )  /  n
) ) )  e.  O ( 1 ) )
Distinct variable groups:    x, n,  .1.    n, N, x    ph, n, x    n, Z, x    D, n, x    n, L, x   
n, X, x
Allowed substitution hints:    G( x, n)

Proof of Theorem dchrvmasum
Dummy variables  y 
c  t  a are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpvmasum.z . . 3  |-  Z  =  (ℤ/n `  N )
2 rpvmasum.l . . 3  |-  L  =  ( ZRHom `  Z
)
3 rpvmasum.a . . 3  |-  ( ph  ->  N  e.  NN )
4 dchrmusum.g . . 3  |-  G  =  (DChr `  N )
5 dchrmusum.d . . 3  |-  D  =  ( Base `  G
)
6 dchrmusum.1 . . 3  |-  .1.  =  ( 0g `  G )
7 dchrmusum.b . . 3  |-  ( ph  ->  X  e.  D )
8 dchrmusum.n1 . . 3  |-  ( ph  ->  X  =/=  .1.  )
9 eqid 2436 . . 3  |-  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  /  a ) )  =  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) )
101, 2, 3, 4, 5, 6, 7, 8, 9dchrmusumlema 21187 . 2  |-  ( ph  ->  E. t E. c  e.  ( 0 [,)  +oo ) (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  / 
y ) ) )
113adantr 452 . . . . 5  |-  ( (
ph  /\  ( c  e.  ( 0 [,)  +oo )  /\  (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  / 
y ) ) ) )  ->  N  e.  NN )
127adantr 452 . . . . 5  |-  ( (
ph  /\  ( c  e.  ( 0 [,)  +oo )  /\  (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  / 
y ) ) ) )  ->  X  e.  D )
138adantr 452 . . . . 5  |-  ( (
ph  /\  ( c  e.  ( 0 [,)  +oo )  /\  (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  / 
y ) ) ) )  ->  X  =/=  .1.  )
14 simprl 733 . . . . 5  |-  ( (
ph  /\  ( c  e.  ( 0 [,)  +oo )  /\  (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  / 
y ) ) ) )  ->  c  e.  ( 0 [,)  +oo ) )
15 simprrl 741 . . . . 5  |-  ( (
ph  /\  ( c  e.  ( 0 [,)  +oo )  /\  (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  / 
y ) ) ) )  ->  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t )
16 simprrr 742 . . . . 5  |-  ( (
ph  /\  ( c  e.  ( 0 [,)  +oo )  /\  (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  / 
y ) ) ) )  ->  A. y  e.  ( 1 [,)  +oo ) ( abs `  (
(  seq  1 (  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  /  a ) ) ) `  ( |_
`  y ) )  -  t ) )  <_  ( c  / 
y ) )
171, 2, 11, 4, 5, 6, 12, 13, 9, 14, 15, 16dchrvmasumlem 21217 . . . 4  |-  ( (
ph  /\  ( c  e.  ( 0 [,)  +oo )  /\  (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  / 
y ) ) ) )  ->  ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  n ) )  x.  ( (Λ `  n )  /  n
) ) )  e.  O ( 1 ) )
1817rexlimdvaa 2831 . . 3  |-  ( ph  ->  ( E. c  e.  ( 0 [,)  +oo ) (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  / 
y ) )  -> 
( x  e.  RR+  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  n )
)  x.  ( (Λ `  n )  /  n
) ) )  e.  O ( 1 ) ) )
1918exlimdv 1646 . 2  |-  ( ph  ->  ( E. t E. c  e.  ( 0 [,)  +oo ) (  seq  1 (  +  , 
( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,)  +oo ) ( abs `  ( (  seq  1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  / 
y ) )  -> 
( x  e.  RR+  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  n )
)  x.  ( (Λ `  n )  /  n
) ) )  e.  O ( 1 ) ) )
2010, 19mpd 15 1  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  n )
)  x.  ( (Λ `  n )  /  n
) ) )  e.  O ( 1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359   E.wex 1550    = wceq 1652    e. wcel 1725    =/= wne 2599   A.wral 2705   E.wrex 2706   class class class wbr 4212    e. cmpt 4266   ` cfv 5454  (class class class)co 6081   0cc0 8990   1c1 8991    + caddc 8993    x. cmul 8995    +oocpnf 9117    <_ cle 9121    - cmin 9291    / cdiv 9677   NNcn 10000   RR+crp 10612   [,)cico 10918   ...cfz 11043   |_cfl 11201    seq cseq 11323   abscabs 12039    ~~> cli 12278   O (
1 )co1 12280   sum_csu 12479   Basecbs 13469   0gc0g 13723   ZRHomczrh 16778  ℤ/nczn 16781  Λcvma 20874  DChrcdchr 21016
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068  ax-addf 9069  ax-mulf 9070
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-fal 1329  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-iin 4096  df-disj 4183  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-of 6305  df-1st 6349  df-2nd 6350  df-tpos 6479  df-rpss 6522  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-2o 6725  df-oadd 6728  df-omul 6729  df-er 6905  df-ec 6907  df-qs 6911  df-map 7020  df-pm 7021  df-ixp 7064  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-fi 7416  df-sup 7446  df-oi 7479  df-card 7826  df-acn 7829  df-cda 8048  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-4 10060  df-5 10061  df-6 10062  df-7 10063  df-8 10064  df-9 10065  df-10 10066  df-n0 10222  df-z 10283  df-dec 10383  df-uz 10489  df-q 10575  df-rp 10613  df-xneg 10710  df-xadd 10711  df-xmul 10712  df-ioo 10920  df-ioc 10921  df-ico 10922  df-icc 10923  df-fz 11044  df-fzo 11136  df-fl 11202  df-mod 11251  df-seq 11324  df-exp 11383  df-fac 11567  df-bc 11594  df-hash 11619  df-word 11723  df-concat 11724  df-s1 11725  df-shft 11882  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-limsup 12265  df-clim 12282  df-rlim 12283  df-o1 12284  df-lo1 12285  df-sum 12480  df-ef 12670  df-e 12671  df-sin 12672  df-cos 12673  df-pi 12675  df-dvds 12853  df-gcd 13007  df-prm 13080  df-numer 13127  df-denom 13128  df-phi 13155  df-pc 13211  df-struct 13471  df-ndx 13472  df-slot 13473  df-base 13474  df-sets 13475  df-ress 13476  df-plusg 13542  df-mulr 13543  df-starv 13544  df-sca 13545  df-vsca 13546  df-tset 13548  df-ple 13549  df-ds 13551  df-unif 13552  df-hom 13553  df-cco 13554  df-rest 13650  df-topn 13651  df-topgen 13667  df-pt 13668  df-prds 13671  df-xrs 13726  df-0g 13727  df-gsum 13728  df-qtop 13733  df-imas 13734  df-divs 13735  df-xps 13736  df-mre 13811  df-mrc 13812  df-acs 13814  df-mnd 14690  df-mhm 14738  df-submnd 14739  df-grp 14812  df-minusg 14813  df-sbg 14814  df-mulg 14815  df-subg 14941  df-nsg 14942  df-eqg 14943  df-ghm 15004  df-gim 15046  df-ga 15067  df-cntz 15116  df-oppg 15142  df-od 15167  df-gex 15168  df-pgp 15169  df-lsm 15270  df-pj1 15271  df-cmn 15414  df-abl 15415  df-cyg 15488  df-dprd 15556  df-dpj 15557  df-mgp 15649  df-rng 15663  df-cring 15664  df-ur 15665  df-oppr 15728  df-dvdsr 15746  df-unit 15747  df-invr 15777  df-dvr 15788  df-rnghom 15819  df-drng 15837  df-subrg 15866  df-lmod 15952  df-lss 16009  df-lsp 16048  df-sra 16244  df-rgmod 16245  df-lidl 16246  df-rsp 16247  df-2idl 16303  df-psmet 16694  df-xmet 16695  df-met 16696  df-bl 16697  df-mopn 16698  df-fbas 16699  df-fg 16700  df-cnfld 16704  df-zrh 16782  df-zn 16785  df-top 16963  df-bases 16965  df-topon 16966  df-topsp 16967  df-cld 17083  df-ntr 17084  df-cls 17085  df-nei 17162  df-lp 17200  df-perf 17201  df-cn 17291  df-cnp 17292  df-haus 17379  df-cmp 17450  df-tx 17594  df-hmeo 17787  df-fil 17878  df-fm 17970  df-flim 17971  df-flf 17972  df-xms 18350  df-ms 18351  df-tms 18352  df-cncf 18908  df-0p 19562  df-limc 19753  df-dv 19754  df-ply 20107  df-idp 20108  df-coe 20109  df-dgr 20110  df-quot 20208  df-log 20454  df-cxp 20455  df-em 20831  df-cht 20879  df-vma 20880  df-chp 20881  df-ppi 20882  df-mu 20883  df-dchr 21017
  Copyright terms: Public domain W3C validator