MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrvmasum2lem Unicode version

Theorem dchrvmasum2lem 20647
Description: Give an expression for  log x remarkably similar to  sum_ n  <_  x
( X ( n )Λ ( n )  /  n ) given in dchrvmasumlem1 20646. Part of Lemma 9.4.3 of [Shapiro], p. 380. (Contributed by Mario Carneiro, 4-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum.g  |-  G  =  (DChr `  N )
rpvmasum.d  |-  D  =  ( Base `  G
)
rpvmasum.1  |-  .1.  =  ( 0g `  G )
dchrisum.b  |-  ( ph  ->  X  e.  D )
dchrisum.n1  |-  ( ph  ->  X  =/=  .1.  )
dchrvmasum.a  |-  ( ph  ->  A  e.  RR+ )
dchrvmasum2.2  |-  ( ph  ->  1  <_  A )
Assertion
Ref Expression
dchrvmasum2lem  |-  ( ph  ->  ( log `  A
)  =  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) ) ( ( X `
 ( L `  m ) )  x.  ( ( log `  (
( A  /  d
)  /  m ) )  /  m ) ) ) )
Distinct variable groups:    .1. , m    m, d, A    m, N    ph, d, m    m, Z    D, m    L, d, m    X, d, m
Allowed substitution hints:    D( d)    .1. ( d)    G( m, d)    N( d)    Z( d)

Proof of Theorem dchrvmasum2lem
Dummy variables  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5527 . . . . . . 7  |-  ( n  =  ( d  x.  m )  ->  ( L `  n )  =  ( L `  ( d  x.  m
) ) )
21fveq2d 5531 . . . . . 6  |-  ( n  =  ( d  x.  m )  ->  ( X `  ( L `  n ) )  =  ( X `  ( L `  ( d  x.  m ) ) ) )
3 id 19 . . . . . 6  |-  ( n  =  ( d  x.  m )  ->  n  =  ( d  x.  m ) )
42, 3oveq12d 5878 . . . . 5  |-  ( n  =  ( d  x.  m )  ->  (
( X `  ( L `  n )
)  /  n )  =  ( ( X `
 ( L `  ( d  x.  m
) ) )  / 
( d  x.  m
) ) )
5 oveq2 5868 . . . . . 6  |-  ( n  =  ( d  x.  m )  ->  ( A  /  n )  =  ( A  /  (
d  x.  m ) ) )
65fveq2d 5531 . . . . 5  |-  ( n  =  ( d  x.  m )  ->  ( log `  ( A  /  n ) )  =  ( log `  ( A  /  ( d  x.  m ) ) ) )
74, 6oveq12d 5878 . . . 4  |-  ( n  =  ( d  x.  m )  ->  (
( ( X `  ( L `  n ) )  /  n )  x.  ( log `  ( A  /  n ) ) )  =  ( ( ( X `  ( L `  ( d  x.  m ) ) )  /  ( d  x.  m ) )  x.  ( log `  ( A  /  ( d  x.  m ) ) ) ) )
87oveq2d 5876 . . 3  |-  ( n  =  ( d  x.  m )  ->  (
( mmu `  d
)  x.  ( ( ( X `  ( L `  n )
)  /  n )  x.  ( log `  ( A  /  n ) ) ) )  =  ( ( mmu `  d
)  x.  ( ( ( X `  ( L `  ( d  x.  m ) ) )  /  ( d  x.  m ) )  x.  ( log `  ( A  /  ( d  x.  m ) ) ) ) ) )
9 dchrvmasum.a . . . 4  |-  ( ph  ->  A  e.  RR+ )
109rpred 10392 . . 3  |-  ( ph  ->  A  e.  RR )
11 ssrab2 3260 . . . . . . . 8  |-  { x  e.  NN  |  x  ||  n }  C_  NN
1211sseli 3178 . . . . . . 7  |-  ( d  e.  { x  e.  NN  |  x  ||  n }  ->  d  e.  NN )
1312ad2antll 709 . . . . . 6  |-  ( (
ph  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  {
x  e.  NN  |  x  ||  n } ) )  ->  d  e.  NN )
14 mucl 20381 . . . . . 6  |-  ( d  e.  NN  ->  (
mmu `  d )  e.  ZZ )
1513, 14syl 15 . . . . 5  |-  ( (
ph  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  {
x  e.  NN  |  x  ||  n } ) )  ->  ( mmu `  d )  e.  ZZ )
1615zcnd 10120 . . . 4  |-  ( (
ph  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  {
x  e.  NN  |  x  ||  n } ) )  ->  ( mmu `  d )  e.  CC )
17 rpvmasum.g . . . . . . . 8  |-  G  =  (DChr `  N )
18 rpvmasum.z . . . . . . . 8  |-  Z  =  (ℤ/n `  N )
19 rpvmasum.d . . . . . . . 8  |-  D  =  ( Base `  G
)
20 rpvmasum.l . . . . . . . 8  |-  L  =  ( ZRHom `  Z
)
21 dchrisum.b . . . . . . . . 9  |-  ( ph  ->  X  e.  D )
2221adantr 451 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  X  e.  D )
23 elfzelz 10800 . . . . . . . . 9  |-  ( n  e.  ( 1 ... ( |_ `  A
) )  ->  n  e.  ZZ )
2423adantl 452 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  n  e.  ZZ )
2517, 18, 19, 20, 22, 24dchrzrhcl 20486 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( X `  ( L `  n
) )  e.  CC )
26 elfznn 10821 . . . . . . . . 9  |-  ( n  e.  ( 1 ... ( |_ `  A
) )  ->  n  e.  NN )
2726adantl 452 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  n  e.  NN )
2827nncnd 9764 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  n  e.  CC )
2927nnne0d 9792 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  n  =/=  0 )
3025, 28, 29divcld 9538 . . . . . 6  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( X `  ( L `  n ) )  /  n )  e.  CC )
3126nnrpd 10391 . . . . . . . . 9  |-  ( n  e.  ( 1 ... ( |_ `  A
) )  ->  n  e.  RR+ )
32 rpdivcl 10378 . . . . . . . . 9  |-  ( ( A  e.  RR+  /\  n  e.  RR+ )  ->  ( A  /  n )  e.  RR+ )
339, 31, 32syl2an 463 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( A  /  n )  e.  RR+ )
3433relogcld 19976 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( log `  ( A  /  n
) )  e.  RR )
3534recnd 8863 . . . . . 6  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( log `  ( A  /  n
) )  e.  CC )
3630, 35mulcld 8857 . . . . 5  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (
( X `  ( L `  n )
)  /  n )  x.  ( log `  ( A  /  n ) ) )  e.  CC )
3736adantrr 697 . . . 4  |-  ( (
ph  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  {
x  e.  NN  |  x  ||  n } ) )  ->  ( (
( X `  ( L `  n )
)  /  n )  x.  ( log `  ( A  /  n ) ) )  e.  CC )
3816, 37mulcld 8857 . . 3  |-  ( (
ph  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  {
x  e.  NN  |  x  ||  n } ) )  ->  ( (
mmu `  d )  x.  ( ( ( X `
 ( L `  n ) )  /  n )  x.  ( log `  ( A  /  n ) ) ) )  e.  CC )
398, 10, 38dvdsflsumcom 20430 . 2  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  A ) ) sum_ d  e.  { x  e.  NN  |  x  ||  n }  ( (
mmu `  d )  x.  ( ( ( X `
 ( L `  n ) )  /  n )  x.  ( log `  ( A  /  n ) ) ) )  =  sum_ d  e.  ( 1 ... ( |_ `  A ) )
sum_ m  e.  (
1 ... ( |_ `  ( A  /  d
) ) ) ( ( mmu `  d
)  x.  ( ( ( X `  ( L `  ( d  x.  m ) ) )  /  ( d  x.  m ) )  x.  ( log `  ( A  /  ( d  x.  m ) ) ) ) ) )
40 fveq2 5527 . . . . . . 7  |-  ( n  =  1  ->  ( L `  n )  =  ( L ` 
1 ) )
4140fveq2d 5531 . . . . . 6  |-  ( n  =  1  ->  ( X `  ( L `  n ) )  =  ( X `  ( L `  1 )
) )
42 id 19 . . . . . 6  |-  ( n  =  1  ->  n  =  1 )
4341, 42oveq12d 5878 . . . . 5  |-  ( n  =  1  ->  (
( X `  ( L `  n )
)  /  n )  =  ( ( X `
 ( L ` 
1 ) )  / 
1 ) )
44 oveq2 5868 . . . . . 6  |-  ( n  =  1  ->  ( A  /  n )  =  ( A  /  1
) )
4544fveq2d 5531 . . . . 5  |-  ( n  =  1  ->  ( log `  ( A  /  n ) )  =  ( log `  ( A  /  1 ) ) )
4643, 45oveq12d 5878 . . . 4  |-  ( n  =  1  ->  (
( ( X `  ( L `  n ) )  /  n )  x.  ( log `  ( A  /  n ) ) )  =  ( ( ( X `  ( L `  1 )
)  /  1 )  x.  ( log `  ( A  /  1 ) ) ) )
47 fzfid 11037 . . . 4  |-  ( ph  ->  ( 1 ... ( |_ `  A ) )  e.  Fin )
4826ssriv 3186 . . . . 5  |-  ( 1 ... ( |_ `  A ) )  C_  NN
4948a1i 10 . . . 4  |-  ( ph  ->  ( 1 ... ( |_ `  A ) ) 
C_  NN )
50 dchrvmasum2.2 . . . . . . 7  |-  ( ph  ->  1  <_  A )
51 flge1nn 10951 . . . . . . 7  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( |_ `  A
)  e.  NN )
5210, 50, 51syl2anc 642 . . . . . 6  |-  ( ph  ->  ( |_ `  A
)  e.  NN )
53 nnuz 10265 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
5452, 53syl6eleq 2375 . . . . 5  |-  ( ph  ->  ( |_ `  A
)  e.  ( ZZ>= ` 
1 ) )
55 eluzfz1 10805 . . . . 5  |-  ( ( |_ `  A )  e.  ( ZZ>= `  1
)  ->  1  e.  ( 1 ... ( |_ `  A ) ) )
5654, 55syl 15 . . . 4  |-  ( ph  ->  1  e.  ( 1 ... ( |_ `  A ) ) )
5746, 47, 49, 56, 36musumsum 20434 . . 3  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  A ) ) sum_ d  e.  { x  e.  NN  |  x  ||  n }  ( (
mmu `  d )  x.  ( ( ( X `
 ( L `  n ) )  /  n )  x.  ( log `  ( A  /  n ) ) ) )  =  ( ( ( X `  ( L `  1 )
)  /  1 )  x.  ( log `  ( A  /  1 ) ) ) )
5817, 18, 19, 20, 21dchrzrh1 20485 . . . . . 6  |-  ( ph  ->  ( X `  ( L `  1 )
)  =  1 )
5958oveq1d 5875 . . . . 5  |-  ( ph  ->  ( ( X `  ( L `  1 ) )  /  1 )  =  ( 1  / 
1 ) )
60 ax-1cn 8797 . . . . . 6  |-  1  e.  CC
6160div1i 9490 . . . . 5  |-  ( 1  /  1 )  =  1
6259, 61syl6eq 2333 . . . 4  |-  ( ph  ->  ( ( X `  ( L `  1 ) )  /  1 )  =  1 )
639rpcnd 10394 . . . . . 6  |-  ( ph  ->  A  e.  CC )
6463div1d 9530 . . . . 5  |-  ( ph  ->  ( A  /  1
)  =  A )
6564fveq2d 5531 . . . 4  |-  ( ph  ->  ( log `  ( A  /  1 ) )  =  ( log `  A
) )
6662, 65oveq12d 5878 . . 3  |-  ( ph  ->  ( ( ( X `
 ( L ` 
1 ) )  / 
1 )  x.  ( log `  ( A  / 
1 ) ) )  =  ( 1  x.  ( log `  A
) ) )
679relogcld 19976 . . . . 5  |-  ( ph  ->  ( log `  A
)  e.  RR )
6867recnd 8863 . . . 4  |-  ( ph  ->  ( log `  A
)  e.  CC )
6968mulid2d 8855 . . 3  |-  ( ph  ->  ( 1  x.  ( log `  A ) )  =  ( log `  A
) )
7057, 66, 693eqtrrd 2322 . 2  |-  ( ph  ->  ( log `  A
)  =  sum_ n  e.  ( 1 ... ( |_ `  A ) )
sum_ d  e.  {
x  e.  NN  |  x  ||  n }  (
( mmu `  d
)  x.  ( ( ( X `  ( L `  n )
)  /  n )  x.  ( log `  ( A  /  n ) ) ) ) )
71 fzfid 11037 . . . . 5  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( 1 ... ( |_ `  ( A  /  d
) ) )  e. 
Fin )
7221adantr 451 . . . . . . 7  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  X  e.  D )
73 elfzelz 10800 . . . . . . . 8  |-  ( d  e.  ( 1 ... ( |_ `  A
) )  ->  d  e.  ZZ )
7473adantl 452 . . . . . . 7  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  d  e.  ZZ )
7517, 18, 19, 20, 72, 74dchrzrhcl 20486 . . . . . 6  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( X `  ( L `  d
) )  e.  CC )
76 fznnfl 10968 . . . . . . . . . . . 12  |-  ( A  e.  RR  ->  (
d  e.  ( 1 ... ( |_ `  A ) )  <->  ( d  e.  NN  /\  d  <_  A ) ) )
7710, 76syl 15 . . . . . . . . . . 11  |-  ( ph  ->  ( d  e.  ( 1 ... ( |_
`  A ) )  <-> 
( d  e.  NN  /\  d  <_  A )
) )
7877simprbda 606 . . . . . . . . . 10  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  d  e.  NN )
7978, 14syl 15 . . . . . . . . 9  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( mmu `  d )  e.  ZZ )
8079zred 10119 . . . . . . . 8  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( mmu `  d )  e.  RR )
8180, 78nndivred 9796 . . . . . . 7  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (
mmu `  d )  /  d )  e.  RR )
8281recnd 8863 . . . . . 6  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (
mmu `  d )  /  d )  e.  CC )
8375, 82mulcld 8857 . . . . 5  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  e.  CC )
8421ad2antrr 706 . . . . . . 7  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  X  e.  D )
85 elfzelz 10800 . . . . . . . 8  |-  ( m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) )  ->  m  e.  ZZ )
8685adantl 452 . . . . . . 7  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  m  e.  ZZ )
8717, 18, 19, 20, 84, 86dchrzrhcl 20486 . . . . . 6  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( X `  ( L `  m
) )  e.  CC )
88 elfznn 10821 . . . . . . . . . . . 12  |-  ( d  e.  ( 1 ... ( |_ `  A
) )  ->  d  e.  NN )
8988nnrpd 10391 . . . . . . . . . . 11  |-  ( d  e.  ( 1 ... ( |_ `  A
) )  ->  d  e.  RR+ )
90 rpdivcl 10378 . . . . . . . . . . 11  |-  ( ( A  e.  RR+  /\  d  e.  RR+ )  ->  ( A  /  d )  e.  RR+ )
919, 89, 90syl2an 463 . . . . . . . . . 10  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( A  /  d )  e.  RR+ )
92 elfznn 10821 . . . . . . . . . . 11  |-  ( m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) )  ->  m  e.  NN )
9392nnrpd 10391 . . . . . . . . . 10  |-  ( m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) )  ->  m  e.  RR+ )
94 rpdivcl 10378 . . . . . . . . . 10  |-  ( ( ( A  /  d
)  e.  RR+  /\  m  e.  RR+ )  ->  (
( A  /  d
)  /  m )  e.  RR+ )
9591, 93, 94syl2an 463 . . . . . . . . 9  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( ( A  /  d )  /  m )  e.  RR+ )
9695relogcld 19976 . . . . . . . 8  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( log `  ( ( A  / 
d )  /  m
) )  e.  RR )
9792adantl 452 . . . . . . . 8  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  m  e.  NN )
9896, 97nndivred 9796 . . . . . . 7  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( ( log `  ( ( A  /  d )  /  m ) )  /  m )  e.  RR )
9998recnd 8863 . . . . . 6  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( ( log `  ( ( A  /  d )  /  m ) )  /  m )  e.  CC )
10087, 99mulcld 8857 . . . . 5  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( ( X `  ( L `  m ) )  x.  ( ( log `  (
( A  /  d
)  /  m ) )  /  m ) )  e.  CC )
10171, 83, 100fsummulc2 12248 . . . 4  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (
( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( A  / 
d ) ) ) ( ( X `  ( L `  m ) )  x.  ( ( log `  ( ( A  /  d )  /  m ) )  /  m ) ) )  =  sum_ m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (
( X `  ( L `  m )
)  x.  ( ( log `  ( ( A  /  d )  /  m ) )  /  m ) ) ) )
10275adantr 451 . . . . . . . 8  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( X `  ( L `  d
) )  e.  CC )
10380adantr 451 . . . . . . . . 9  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( mmu `  d )  e.  RR )
104103recnd 8863 . . . . . . . 8  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( mmu `  d )  e.  CC )
10578nnrpd 10391 . . . . . . . . . 10  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  d  e.  RR+ )
106105adantr 451 . . . . . . . . 9  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  d  e.  RR+ )
107106rpcnne0d 10401 . . . . . . . 8  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( d  e.  CC  /\  d  =/=  0 ) )
108 div12 9448 . . . . . . . 8  |-  ( ( ( X `  ( L `  d )
)  e.  CC  /\  ( mmu `  d )  e.  CC  /\  (
d  e.  CC  /\  d  =/=  0 ) )  ->  ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  =  ( ( mmu `  d
)  x.  ( ( X `  ( L `
 d ) )  /  d ) ) )
109102, 104, 107, 108syl3anc 1182 . . . . . . 7  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  =  ( ( mmu `  d
)  x.  ( ( X `  ( L `
 d ) )  /  d ) ) )
11096recnd 8863 . . . . . . . 8  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( log `  ( ( A  / 
d )  /  m
) )  e.  CC )
11197nnrpd 10391 . . . . . . . . 9  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  m  e.  RR+ )
112111rpcnne0d 10401 . . . . . . . 8  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( m  e.  CC  /\  m  =/=  0 ) )
113 div12 9448 . . . . . . . 8  |-  ( ( ( X `  ( L `  m )
)  e.  CC  /\  ( log `  ( ( A  /  d )  /  m ) )  e.  CC  /\  (
m  e.  CC  /\  m  =/=  0 ) )  ->  ( ( X `
 ( L `  m ) )  x.  ( ( log `  (
( A  /  d
)  /  m ) )  /  m ) )  =  ( ( log `  ( ( A  /  d )  /  m ) )  x.  ( ( X `
 ( L `  m ) )  /  m ) ) )
11487, 110, 112, 113syl3anc 1182 . . . . . . 7  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( ( X `  ( L `  m ) )  x.  ( ( log `  (
( A  /  d
)  /  m ) )  /  m ) )  =  ( ( log `  ( ( A  /  d )  /  m ) )  x.  ( ( X `
 ( L `  m ) )  /  m ) ) )
115109, 114oveq12d 5878 . . . . . 6  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( (
( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  ( ( X `
 ( L `  m ) )  x.  ( ( log `  (
( A  /  d
)  /  m ) )  /  m ) ) )  =  ( ( ( mmu `  d )  x.  (
( X `  ( L `  d )
)  /  d ) )  x.  ( ( log `  ( ( A  /  d )  /  m ) )  x.  ( ( X `
 ( L `  m ) )  /  m ) ) ) )
116106rpcnd 10394 . . . . . . . . . 10  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  d  e.  CC )
117106rpne0d 10397 . . . . . . . . . 10  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  d  =/=  0 )
118102, 116, 117divcld 9538 . . . . . . . . 9  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( ( X `  ( L `  d ) )  / 
d )  e.  CC )
11997nncnd 9764 . . . . . . . . . 10  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  m  e.  CC )
12097nnne0d 9792 . . . . . . . . . 10  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  m  =/=  0 )
12187, 119, 120divcld 9538 . . . . . . . . 9  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( ( X `  ( L `  m ) )  /  m )  e.  CC )
122118, 121mulcld 8857 . . . . . . . 8  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( (
( X `  ( L `  d )
)  /  d )  x.  ( ( X `
 ( L `  m ) )  /  m ) )  e.  CC )
123104, 110, 122mulassd 8860 . . . . . . 7  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( (
( mmu `  d
)  x.  ( log `  ( ( A  / 
d )  /  m
) ) )  x.  ( ( ( X `
 ( L `  d ) )  / 
d )  x.  (
( X `  ( L `  m )
)  /  m ) ) )  =  ( ( mmu `  d
)  x.  ( ( log `  ( ( A  /  d )  /  m ) )  x.  ( ( ( X `  ( L `
 d ) )  /  d )  x.  ( ( X `  ( L `  m ) )  /  m ) ) ) ) )
124104, 118, 110, 121mul4d 9026 . . . . . . 7  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( (
( mmu `  d
)  x.  ( ( X `  ( L `
 d ) )  /  d ) )  x.  ( ( log `  ( ( A  / 
d )  /  m
) )  x.  (
( X `  ( L `  m )
)  /  m ) ) )  =  ( ( ( mmu `  d )  x.  ( log `  ( ( A  /  d )  /  m ) ) )  x.  ( ( ( X `  ( L `
 d ) )  /  d )  x.  ( ( X `  ( L `  m ) )  /  m ) ) ) )
12573ad2antlr 707 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  d  e.  ZZ )
12617, 18, 19, 20, 84, 125, 86dchrzrhmul 20487 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( X `  ( L `  (
d  x.  m ) ) )  =  ( ( X `  ( L `  d )
)  x.  ( X `
 ( L `  m ) ) ) )
127126oveq1d 5875 . . . . . . . . . . 11  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( ( X `  ( L `  ( d  x.  m
) ) )  / 
( d  x.  m
) )  =  ( ( ( X `  ( L `  d ) )  x.  ( X `
 ( L `  m ) ) )  /  ( d  x.  m ) ) )
128 divmuldiv 9462 . . . . . . . . . . . 12  |-  ( ( ( ( X `  ( L `  d ) )  e.  CC  /\  ( X `  ( L `
 m ) )  e.  CC )  /\  ( ( d  e.  CC  /\  d  =/=  0 )  /\  (
m  e.  CC  /\  m  =/=  0 ) ) )  ->  ( (
( X `  ( L `  d )
)  /  d )  x.  ( ( X `
 ( L `  m ) )  /  m ) )  =  ( ( ( X `
 ( L `  d ) )  x.  ( X `  ( L `  m )
) )  /  (
d  x.  m ) ) )
129102, 87, 107, 112, 128syl22anc 1183 . . . . . . . . . . 11  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( (
( X `  ( L `  d )
)  /  d )  x.  ( ( X `
 ( L `  m ) )  /  m ) )  =  ( ( ( X `
 ( L `  d ) )  x.  ( X `  ( L `  m )
) )  /  (
d  x.  m ) ) )
130127, 129eqtr4d 2320 . . . . . . . . . 10  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( ( X `  ( L `  ( d  x.  m
) ) )  / 
( d  x.  m
) )  =  ( ( ( X `  ( L `  d ) )  /  d )  x.  ( ( X `
 ( L `  m ) )  /  m ) ) )
13163ad2antrr 706 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  A  e.  CC )
132 divdiv1 9473 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  ( d  e.  CC  /\  d  =/=  0 )  /\  ( m  e.  CC  /\  m  =/=  0 ) )  -> 
( ( A  / 
d )  /  m
)  =  ( A  /  ( d  x.  m ) ) )
133131, 107, 112, 132syl3anc 1182 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( ( A  /  d )  /  m )  =  ( A  /  ( d  x.  m ) ) )
134133eqcomd 2290 . . . . . . . . . . 11  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( A  /  ( d  x.  m ) )  =  ( ( A  / 
d )  /  m
) )
135134fveq2d 5531 . . . . . . . . . 10  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( log `  ( A  /  (
d  x.  m ) ) )  =  ( log `  ( ( A  /  d )  /  m ) ) )
136130, 135oveq12d 5878 . . . . . . . . 9  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( (
( X `  ( L `  ( d  x.  m ) ) )  /  ( d  x.  m ) )  x.  ( log `  ( A  /  ( d  x.  m ) ) ) )  =  ( ( ( ( X `  ( L `  d ) )  /  d )  x.  ( ( X `
 ( L `  m ) )  /  m ) )  x.  ( log `  (
( A  /  d
)  /  m ) ) ) )
137122, 110mulcomd 8858 . . . . . . . . 9  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( (
( ( X `  ( L `  d ) )  /  d )  x.  ( ( X `
 ( L `  m ) )  /  m ) )  x.  ( log `  (
( A  /  d
)  /  m ) ) )  =  ( ( log `  (
( A  /  d
)  /  m ) )  x.  ( ( ( X `  ( L `  d )
)  /  d )  x.  ( ( X `
 ( L `  m ) )  /  m ) ) ) )
138136, 137eqtrd 2317 . . . . . . . 8  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( (
( X `  ( L `  ( d  x.  m ) ) )  /  ( d  x.  m ) )  x.  ( log `  ( A  /  ( d  x.  m ) ) ) )  =  ( ( log `  ( ( A  /  d )  /  m ) )  x.  ( ( ( X `  ( L `
 d ) )  /  d )  x.  ( ( X `  ( L `  m ) )  /  m ) ) ) )
139138oveq2d 5876 . . . . . . 7  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( (
mmu `  d )  x.  ( ( ( X `
 ( L `  ( d  x.  m
) ) )  / 
( d  x.  m
) )  x.  ( log `  ( A  / 
( d  x.  m
) ) ) ) )  =  ( ( mmu `  d )  x.  ( ( log `  ( ( A  / 
d )  /  m
) )  x.  (
( ( X `  ( L `  d ) )  /  d )  x.  ( ( X `
 ( L `  m ) )  /  m ) ) ) ) )
140123, 124, 1393eqtr4d 2327 . . . . . 6  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( (
( mmu `  d
)  x.  ( ( X `  ( L `
 d ) )  /  d ) )  x.  ( ( log `  ( ( A  / 
d )  /  m
) )  x.  (
( X `  ( L `  m )
)  /  m ) ) )  =  ( ( mmu `  d
)  x.  ( ( ( X `  ( L `  ( d  x.  m ) ) )  /  ( d  x.  m ) )  x.  ( log `  ( A  /  ( d  x.  m ) ) ) ) ) )
141115, 140eqtrd 2317 . . . . 5  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( (
( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  ( ( X `
 ( L `  m ) )  x.  ( ( log `  (
( A  /  d
)  /  m ) )  /  m ) ) )  =  ( ( mmu `  d
)  x.  ( ( ( X `  ( L `  ( d  x.  m ) ) )  /  ( d  x.  m ) )  x.  ( log `  ( A  /  ( d  x.  m ) ) ) ) ) )
142141sumeq2dv 12178 . . . 4  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (
( X `  ( L `  m )
)  x.  ( ( log `  ( ( A  /  d )  /  m ) )  /  m ) ) )  =  sum_ m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) ( ( mmu `  d )  x.  (
( ( X `  ( L `  ( d  x.  m ) ) )  /  ( d  x.  m ) )  x.  ( log `  ( A  /  ( d  x.  m ) ) ) ) ) )
143101, 142eqtrd 2317 . . 3  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (
( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( A  / 
d ) ) ) ( ( X `  ( L `  m ) )  x.  ( ( log `  ( ( A  /  d )  /  m ) )  /  m ) ) )  =  sum_ m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) ( ( mmu `  d )  x.  (
( ( X `  ( L `  ( d  x.  m ) ) )  /  ( d  x.  m ) )  x.  ( log `  ( A  /  ( d  x.  m ) ) ) ) ) )
144143sumeq2dv 12178 . 2  |-  ( ph  -> 
sum_ d  e.  ( 1 ... ( |_
`  A ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) ) ( ( X `
 ( L `  m ) )  x.  ( ( log `  (
( A  /  d
)  /  m ) )  /  m ) ) )  =  sum_ d  e.  ( 1 ... ( |_ `  A ) ) sum_ m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) ) ( ( mmu `  d )  x.  (
( ( X `  ( L `  ( d  x.  m ) ) )  /  ( d  x.  m ) )  x.  ( log `  ( A  /  ( d  x.  m ) ) ) ) ) )
14539, 70, 1443eqtr4d 2327 1  |-  ( ph  ->  ( log `  A
)  =  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) ) ( ( X `
 ( L `  m ) )  x.  ( ( log `  (
( A  /  d
)  /  m ) )  /  m ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1625    e. wcel 1686    =/= wne 2448   {crab 2549    C_ wss 3154   class class class wbr 4025   ` cfv 5257  (class class class)co 5860   CCcc 8737   RRcr 8738   0cc0 8739   1c1 8740    x. cmul 8744    <_ cle 8870    / cdiv 9425   NNcn 9748   ZZcz 10026   ZZ>=cuz 10232   RR+crp 10356   ...cfz 10784   |_cfl 10926   sum_csu 12160    || cdivides 12533   Basecbs 13150   0gc0g 13402   ZRHomczrh 16453  ℤ/nczn 16456   logclog 19914   mmucmu 20334  DChrcdchr 20473
This theorem is referenced by:  dchrvmasum2if  20648
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-inf2 7344  ax-cnex 8795  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815  ax-pre-mulgt0 8816  ax-pre-sup 8817  ax-addf 8818  ax-mulf 8819
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-iin 3910  df-disj 3996  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-se 4355  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-isom 5266  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-of 6080  df-1st 6124  df-2nd 6125  df-tpos 6236  df-riota 6306  df-recs 6390  df-rdg 6425  df-1o 6481  df-2o 6482  df-oadd 6485  df-er 6662  df-ec 6664  df-qs 6668  df-map 6776  df-pm 6777  df-ixp 6820  df-en 6866  df-dom 6867  df-sdom 6868  df-fin 6869  df-fi 7167  df-sup 7196  df-oi 7227  df-card 7574  df-cda 7796  df-pnf 8871  df-mnf 8872  df-xr 8873  df-ltxr 8874  df-le 8875  df-sub 9041  df-neg 9042  df-div 9426  df-nn 9749  df-2 9806  df-3 9807  df-4 9808  df-5 9809  df-6 9810  df-7 9811  df-8 9812  df-9 9813  df-10 9814  df-n0 9968  df-z 10027  df-dec 10127  df-uz 10233  df-q 10319  df-rp 10357  df-xneg 10454  df-xadd 10455  df-xmul 10456  df-ioo 10662  df-ioc 10663  df-ico 10664  df-icc 10665  df-fz 10785  df-fzo 10873  df-fl 10927  df-mod 10976  df-seq 11049  df-exp 11107  df-fac 11291  df-bc 11318  df-hash 11340  df-shft 11564  df-cj 11586  df-re 11587  df-im 11588  df-sqr 11722  df-abs 11723  df-limsup 11947  df-clim 11964  df-rlim 11965  df-sum 12161  df-ef 12351  df-sin 12353  df-cos 12354  df-pi 12356  df-dvds 12534  df-gcd 12688  df-prm 12761  df-pc 12892  df-struct 13152  df-ndx 13153  df-slot 13154  df-base 13155  df-sets 13156  df-ress 13157  df-plusg 13223  df-mulr 13224  df-starv 13225  df-sca 13226  df-vsca 13227  df-tset 13229  df-ple 13230  df-ds 13232  df-hom 13234  df-cco 13235  df-rest 13329  df-topn 13330  df-topgen 13346  df-pt 13347  df-prds 13350  df-xrs 13405  df-0g 13406  df-gsum 13407  df-qtop 13412  df-imas 13413  df-divs 13414  df-xps 13415  df-mre 13490  df-mrc 13491  df-acs 13493  df-mnd 14369  df-mhm 14417  df-submnd 14418  df-grp 14491  df-minusg 14492  df-sbg 14493  df-mulg 14494  df-subg 14620  df-nsg 14621  df-eqg 14622  df-ghm 14683  df-cntz 14795  df-cmn 15093  df-abl 15094  df-mgp 15328  df-rng 15342  df-cring 15343  df-ur 15344  df-oppr 15407  df-dvdsr 15425  df-unit 15426  df-rnghom 15498  df-subrg 15545  df-lmod 15631  df-lss 15692  df-lsp 15731  df-sra 15927  df-rgmod 15928  df-lidl 15929  df-rsp 15930  df-2idl 15986  df-xmet 16375  df-met 16376  df-bl 16377  df-mopn 16378  df-cnfld 16380  df-zrh 16457  df-zn 16460  df-top 16638  df-bases 16640  df-topon 16641  df-topsp 16642  df-cld 16758  df-ntr 16759  df-cls 16760  df-nei 16837  df-lp 16870  df-perf 16871  df-cn 16959  df-cnp 16960  df-haus 17045  df-tx 17259  df-hmeo 17448  df-fbas 17522  df-fg 17523  df-fil 17543  df-fm 17635  df-flim 17636  df-flf 17637  df-xms 17887  df-ms 17888  df-tms 17889  df-cncf 18384  df-limc 19218  df-dv 19219  df-log 19916  df-mu 20340  df-dchr 20474
  Copyright terms: Public domain W3C validator