MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrvmasum2lem Unicode version

Theorem dchrvmasum2lem 20593
Description: Give an expression for  log x remarkably similar to  sum_ n  <_  x
( X ( n )Λ ( n )  /  n ) given in dchrvmasumlem1 20592. Part of Lemma 9.4.3 of [Shapiro], p. 380. (Contributed by Mario Carneiro, 4-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum.g  |-  G  =  (DChr `  N )
rpvmasum.d  |-  D  =  ( Base `  G
)
rpvmasum.1  |-  .1.  =  ( 0g `  G )
dchrisum.b  |-  ( ph  ->  X  e.  D )
dchrisum.n1  |-  ( ph  ->  X  =/=  .1.  )
dchrvmasum.a  |-  ( ph  ->  A  e.  RR+ )
dchrvmasum2.2  |-  ( ph  ->  1  <_  A )
Assertion
Ref Expression
dchrvmasum2lem  |-  ( ph  ->  ( log `  A
)  =  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) ) ( ( X `
 ( L `  m ) )  x.  ( ( log `  (
( A  /  d
)  /  m ) )  /  m ) ) ) )
Distinct variable groups:    .1. , m    m, d, A    m, N    ph, d, m    m, Z    D, m    L, d, m    X, d, m
Allowed substitution hints:    D( d)    .1. ( d)    G( m, d)    N( d)    Z( d)

Proof of Theorem dchrvmasum2lem
StepHypRef Expression
1 fveq2 5444 . . . . . . 7  |-  ( n  =  ( d  x.  m )  ->  ( L `  n )  =  ( L `  ( d  x.  m
) ) )
21fveq2d 5448 . . . . . 6  |-  ( n  =  ( d  x.  m )  ->  ( X `  ( L `  n ) )  =  ( X `  ( L `  ( d  x.  m ) ) ) )
3 id 21 . . . . . 6  |-  ( n  =  ( d  x.  m )  ->  n  =  ( d  x.  m ) )
42, 3oveq12d 5796 . . . . 5  |-  ( n  =  ( d  x.  m )  ->  (
( X `  ( L `  n )
)  /  n )  =  ( ( X `
 ( L `  ( d  x.  m
) ) )  / 
( d  x.  m
) ) )
5 oveq2 5786 . . . . . 6  |-  ( n  =  ( d  x.  m )  ->  ( A  /  n )  =  ( A  /  (
d  x.  m ) ) )
65fveq2d 5448 . . . . 5  |-  ( n  =  ( d  x.  m )  ->  ( log `  ( A  /  n ) )  =  ( log `  ( A  /  ( d  x.  m ) ) ) )
74, 6oveq12d 5796 . . . 4  |-  ( n  =  ( d  x.  m )  ->  (
( ( X `  ( L `  n ) )  /  n )  x.  ( log `  ( A  /  n ) ) )  =  ( ( ( X `  ( L `  ( d  x.  m ) ) )  /  ( d  x.  m ) )  x.  ( log `  ( A  /  ( d  x.  m ) ) ) ) )
87oveq2d 5794 . . 3  |-  ( n  =  ( d  x.  m )  ->  (
( mmu `  d
)  x.  ( ( ( X `  ( L `  n )
)  /  n )  x.  ( log `  ( A  /  n ) ) ) )  =  ( ( mmu `  d
)  x.  ( ( ( X `  ( L `  ( d  x.  m ) ) )  /  ( d  x.  m ) )  x.  ( log `  ( A  /  ( d  x.  m ) ) ) ) ) )
9 dchrvmasum.a . . . 4  |-  ( ph  ->  A  e.  RR+ )
109rpred 10343 . . 3  |-  ( ph  ->  A  e.  RR )
11 ssrab2 3219 . . . . . . . 8  |-  { x  e.  NN  |  x  ||  n }  C_  NN
1211sseli 3137 . . . . . . 7  |-  ( d  e.  { x  e.  NN  |  x  ||  n }  ->  d  e.  NN )
1312ad2antll 712 . . . . . 6  |-  ( (
ph  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  {
x  e.  NN  |  x  ||  n } ) )  ->  d  e.  NN )
14 mucl 20327 . . . . . 6  |-  ( d  e.  NN  ->  (
mmu `  d )  e.  ZZ )
1513, 14syl 17 . . . . 5  |-  ( (
ph  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  {
x  e.  NN  |  x  ||  n } ) )  ->  ( mmu `  d )  e.  ZZ )
1615zcnd 10071 . . . 4  |-  ( (
ph  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  {
x  e.  NN  |  x  ||  n } ) )  ->  ( mmu `  d )  e.  CC )
17 rpvmasum.g . . . . . . . 8  |-  G  =  (DChr `  N )
18 rpvmasum.z . . . . . . . 8  |-  Z  =  (ℤ/n `  N )
19 rpvmasum.d . . . . . . . 8  |-  D  =  ( Base `  G
)
20 rpvmasum.l . . . . . . . 8  |-  L  =  ( ZRHom `  Z
)
21 dchrisum.b . . . . . . . . 9  |-  ( ph  ->  X  e.  D )
2221adantr 453 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  X  e.  D )
23 elfzelz 10750 . . . . . . . . 9  |-  ( n  e.  ( 1 ... ( |_ `  A
) )  ->  n  e.  ZZ )
2423adantl 454 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  n  e.  ZZ )
2517, 18, 19, 20, 22, 24dchrzrhcl 20432 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( X `  ( L `  n
) )  e.  CC )
26 elfznn 10771 . . . . . . . . 9  |-  ( n  e.  ( 1 ... ( |_ `  A
) )  ->  n  e.  NN )
2726adantl 454 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  n  e.  NN )
2827nncnd 9716 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  n  e.  CC )
2927nnne0d 9744 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  n  =/=  0 )
3025, 28, 29divcld 9490 . . . . . 6  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( X `  ( L `  n ) )  /  n )  e.  CC )
3126nnrpd 10342 . . . . . . . . 9  |-  ( n  e.  ( 1 ... ( |_ `  A
) )  ->  n  e.  RR+ )
32 rpdivcl 10329 . . . . . . . . 9  |-  ( ( A  e.  RR+  /\  n  e.  RR+ )  ->  ( A  /  n )  e.  RR+ )
339, 31, 32syl2an 465 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( A  /  n )  e.  RR+ )
3433relogcld 19922 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( log `  ( A  /  n
) )  e.  RR )
3534recnd 8815 . . . . . 6  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( log `  ( A  /  n
) )  e.  CC )
3630, 35mulcld 8809 . . . . 5  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (
( X `  ( L `  n )
)  /  n )  x.  ( log `  ( A  /  n ) ) )  e.  CC )
3736adantrr 700 . . . 4  |-  ( (
ph  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  {
x  e.  NN  |  x  ||  n } ) )  ->  ( (
( X `  ( L `  n )
)  /  n )  x.  ( log `  ( A  /  n ) ) )  e.  CC )
3816, 37mulcld 8809 . . 3  |-  ( (
ph  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  {
x  e.  NN  |  x  ||  n } ) )  ->  ( (
mmu `  d )  x.  ( ( ( X `
 ( L `  n ) )  /  n )  x.  ( log `  ( A  /  n ) ) ) )  e.  CC )
398, 10, 38dvdsflsumcom 20376 . 2  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  A ) ) sum_ d  e.  { x  e.  NN  |  x  ||  n }  ( (
mmu `  d )  x.  ( ( ( X `
 ( L `  n ) )  /  n )  x.  ( log `  ( A  /  n ) ) ) )  =  sum_ d  e.  ( 1 ... ( |_ `  A ) )
sum_ m  e.  (
1 ... ( |_ `  ( A  /  d
) ) ) ( ( mmu `  d
)  x.  ( ( ( X `  ( L `  ( d  x.  m ) ) )  /  ( d  x.  m ) )  x.  ( log `  ( A  /  ( d  x.  m ) ) ) ) ) )
40 fveq2 5444 . . . . . . 7  |-  ( n  =  1  ->  ( L `  n )  =  ( L ` 
1 ) )
4140fveq2d 5448 . . . . . 6  |-  ( n  =  1  ->  ( X `  ( L `  n ) )  =  ( X `  ( L `  1 )
) )
42 id 21 . . . . . 6  |-  ( n  =  1  ->  n  =  1 )
4341, 42oveq12d 5796 . . . . 5  |-  ( n  =  1  ->  (
( X `  ( L `  n )
)  /  n )  =  ( ( X `
 ( L ` 
1 ) )  / 
1 ) )
44 oveq2 5786 . . . . . 6  |-  ( n  =  1  ->  ( A  /  n )  =  ( A  /  1
) )
4544fveq2d 5448 . . . . 5  |-  ( n  =  1  ->  ( log `  ( A  /  n ) )  =  ( log `  ( A  /  1 ) ) )
4643, 45oveq12d 5796 . . . 4  |-  ( n  =  1  ->  (
( ( X `  ( L `  n ) )  /  n )  x.  ( log `  ( A  /  n ) ) )  =  ( ( ( X `  ( L `  1 )
)  /  1 )  x.  ( log `  ( A  /  1 ) ) ) )
47 fzfid 10987 . . . 4  |-  ( ph  ->  ( 1 ... ( |_ `  A ) )  e.  Fin )
4826ssriv 3145 . . . . 5  |-  ( 1 ... ( |_ `  A ) )  C_  NN
4948a1i 12 . . . 4  |-  ( ph  ->  ( 1 ... ( |_ `  A ) ) 
C_  NN )
50 dchrvmasum2.2 . . . . . . 7  |-  ( ph  ->  1  <_  A )
51 flge1nn 10901 . . . . . . 7  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( |_ `  A
)  e.  NN )
5210, 50, 51syl2anc 645 . . . . . 6  |-  ( ph  ->  ( |_ `  A
)  e.  NN )
53 nnuz 10216 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
5452, 53syl6eleq 2346 . . . . 5  |-  ( ph  ->  ( |_ `  A
)  e.  ( ZZ>= ` 
1 ) )
55 eluzfz1 10755 . . . . 5  |-  ( ( |_ `  A )  e.  ( ZZ>= `  1
)  ->  1  e.  ( 1 ... ( |_ `  A ) ) )
5654, 55syl 17 . . . 4  |-  ( ph  ->  1  e.  ( 1 ... ( |_ `  A ) ) )
5746, 47, 49, 56, 36musumsum 20380 . . 3  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  A ) ) sum_ d  e.  { x  e.  NN  |  x  ||  n }  ( (
mmu `  d )  x.  ( ( ( X `
 ( L `  n ) )  /  n )  x.  ( log `  ( A  /  n ) ) ) )  =  ( ( ( X `  ( L `  1 )
)  /  1 )  x.  ( log `  ( A  /  1 ) ) ) )
5817, 18, 19, 20, 21dchrzrh1 20431 . . . . . 6  |-  ( ph  ->  ( X `  ( L `  1 )
)  =  1 )
5958oveq1d 5793 . . . . 5  |-  ( ph  ->  ( ( X `  ( L `  1 ) )  /  1 )  =  ( 1  / 
1 ) )
60 ax-1cn 8749 . . . . . 6  |-  1  e.  CC
6160div1i 9442 . . . . 5  |-  ( 1  /  1 )  =  1
6259, 61syl6eq 2304 . . . 4  |-  ( ph  ->  ( ( X `  ( L `  1 ) )  /  1 )  =  1 )
639rpcnd 10345 . . . . . 6  |-  ( ph  ->  A  e.  CC )
6463div1d 9482 . . . . 5  |-  ( ph  ->  ( A  /  1
)  =  A )
6564fveq2d 5448 . . . 4  |-  ( ph  ->  ( log `  ( A  /  1 ) )  =  ( log `  A
) )
6662, 65oveq12d 5796 . . 3  |-  ( ph  ->  ( ( ( X `
 ( L ` 
1 ) )  / 
1 )  x.  ( log `  ( A  / 
1 ) ) )  =  ( 1  x.  ( log `  A
) ) )
679relogcld 19922 . . . . 5  |-  ( ph  ->  ( log `  A
)  e.  RR )
6867recnd 8815 . . . 4  |-  ( ph  ->  ( log `  A
)  e.  CC )
6968mulid2d 8807 . . 3  |-  ( ph  ->  ( 1  x.  ( log `  A ) )  =  ( log `  A
) )
7057, 66, 693eqtrrd 2293 . 2  |-  ( ph  ->  ( log `  A
)  =  sum_ n  e.  ( 1 ... ( |_ `  A ) )
sum_ d  e.  {
x  e.  NN  |  x  ||  n }  (
( mmu `  d
)  x.  ( ( ( X `  ( L `  n )
)  /  n )  x.  ( log `  ( A  /  n ) ) ) ) )
71 fzfid 10987 . . . . 5  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( 1 ... ( |_ `  ( A  /  d
) ) )  e. 
Fin )
7221adantr 453 . . . . . . 7  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  X  e.  D )
73 elfzelz 10750 . . . . . . . 8  |-  ( d  e.  ( 1 ... ( |_ `  A
) )  ->  d  e.  ZZ )
7473adantl 454 . . . . . . 7  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  d  e.  ZZ )
7517, 18, 19, 20, 72, 74dchrzrhcl 20432 . . . . . 6  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( X `  ( L `  d
) )  e.  CC )
76 fznnfl 10918 . . . . . . . . . . . 12  |-  ( A  e.  RR  ->  (
d  e.  ( 1 ... ( |_ `  A ) )  <->  ( d  e.  NN  /\  d  <_  A ) ) )
7710, 76syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( d  e.  ( 1 ... ( |_
`  A ) )  <-> 
( d  e.  NN  /\  d  <_  A )
) )
7877simprbda 609 . . . . . . . . . 10  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  d  e.  NN )
7978, 14syl 17 . . . . . . . . 9  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( mmu `  d )  e.  ZZ )
8079zred 10070 . . . . . . . 8  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( mmu `  d )  e.  RR )
8180, 78nndivred 9748 . . . . . . 7  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (
mmu `  d )  /  d )  e.  RR )
8281recnd 8815 . . . . . 6  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (
mmu `  d )  /  d )  e.  CC )
8375, 82mulcld 8809 . . . . 5  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  e.  CC )
8421ad2antrr 709 . . . . . . 7  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  X  e.  D )
85 elfzelz 10750 . . . . . . . 8  |-  ( m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) )  ->  m  e.  ZZ )
8685adantl 454 . . . . . . 7  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  m  e.  ZZ )
8717, 18, 19, 20, 84, 86dchrzrhcl 20432 . . . . . 6  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( X `  ( L `  m
) )  e.  CC )
88 elfznn 10771 . . . . . . . . . . . 12  |-  ( d  e.  ( 1 ... ( |_ `  A
) )  ->  d  e.  NN )
8988nnrpd 10342 . . . . . . . . . . 11  |-  ( d  e.  ( 1 ... ( |_ `  A
) )  ->  d  e.  RR+ )
90 rpdivcl 10329 . . . . . . . . . . 11  |-  ( ( A  e.  RR+  /\  d  e.  RR+ )  ->  ( A  /  d )  e.  RR+ )
919, 89, 90syl2an 465 . . . . . . . . . 10  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( A  /  d )  e.  RR+ )
92 elfznn 10771 . . . . . . . . . . 11  |-  ( m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) )  ->  m  e.  NN )
9392nnrpd 10342 . . . . . . . . . 10  |-  ( m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) )  ->  m  e.  RR+ )
94 rpdivcl 10329 . . . . . . . . . 10  |-  ( ( ( A  /  d
)  e.  RR+  /\  m  e.  RR+ )  ->  (
( A  /  d
)  /  m )  e.  RR+ )
9591, 93, 94syl2an 465 . . . . . . . . 9  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( ( A  /  d )  /  m )  e.  RR+ )
9695relogcld 19922 . . . . . . . 8  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( log `  ( ( A  / 
d )  /  m
) )  e.  RR )
9792adantl 454 . . . . . . . 8  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  m  e.  NN )
9896, 97nndivred 9748 . . . . . . 7  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( ( log `  ( ( A  /  d )  /  m ) )  /  m )  e.  RR )
9998recnd 8815 . . . . . 6  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( ( log `  ( ( A  /  d )  /  m ) )  /  m )  e.  CC )
10087, 99mulcld 8809 . . . . 5  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( ( X `  ( L `  m ) )  x.  ( ( log `  (
( A  /  d
)  /  m ) )  /  m ) )  e.  CC )
10171, 83, 100fsummulc2 12197 . . . 4  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (
( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( A  / 
d ) ) ) ( ( X `  ( L `  m ) )  x.  ( ( log `  ( ( A  /  d )  /  m ) )  /  m ) ) )  =  sum_ m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (
( X `  ( L `  m )
)  x.  ( ( log `  ( ( A  /  d )  /  m ) )  /  m ) ) ) )
10275adantr 453 . . . . . . . 8  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( X `  ( L `  d
) )  e.  CC )
10380adantr 453 . . . . . . . . 9  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( mmu `  d )  e.  RR )
104103recnd 8815 . . . . . . . 8  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( mmu `  d )  e.  CC )
10578nnrpd 10342 . . . . . . . . . 10  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  d  e.  RR+ )
106105adantr 453 . . . . . . . . 9  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  d  e.  RR+ )
107106rpcnne0d 10352 . . . . . . . 8  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( d  e.  CC  /\  d  =/=  0 ) )
108 div12 9400 . . . . . . . 8  |-  ( ( ( X `  ( L `  d )
)  e.  CC  /\  ( mmu `  d )  e.  CC  /\  (
d  e.  CC  /\  d  =/=  0 ) )  ->  ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  =  ( ( mmu `  d
)  x.  ( ( X `  ( L `
 d ) )  /  d ) ) )
109102, 104, 107, 108syl3anc 1187 . . . . . . 7  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  =  ( ( mmu `  d
)  x.  ( ( X `  ( L `
 d ) )  /  d ) ) )
11096recnd 8815 . . . . . . . 8  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( log `  ( ( A  / 
d )  /  m
) )  e.  CC )
11197nnrpd 10342 . . . . . . . . 9  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  m  e.  RR+ )
112111rpcnne0d 10352 . . . . . . . 8  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( m  e.  CC  /\  m  =/=  0 ) )
113 div12 9400 . . . . . . . 8  |-  ( ( ( X `  ( L `  m )
)  e.  CC  /\  ( log `  ( ( A  /  d )  /  m ) )  e.  CC  /\  (
m  e.  CC  /\  m  =/=  0 ) )  ->  ( ( X `
 ( L `  m ) )  x.  ( ( log `  (
( A  /  d
)  /  m ) )  /  m ) )  =  ( ( log `  ( ( A  /  d )  /  m ) )  x.  ( ( X `
 ( L `  m ) )  /  m ) ) )
11487, 110, 112, 113syl3anc 1187 . . . . . . 7  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( ( X `  ( L `  m ) )  x.  ( ( log `  (
( A  /  d
)  /  m ) )  /  m ) )  =  ( ( log `  ( ( A  /  d )  /  m ) )  x.  ( ( X `
 ( L `  m ) )  /  m ) ) )
115109, 114oveq12d 5796 . . . . . 6  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( (
( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  ( ( X `
 ( L `  m ) )  x.  ( ( log `  (
( A  /  d
)  /  m ) )  /  m ) ) )  =  ( ( ( mmu `  d )  x.  (
( X `  ( L `  d )
)  /  d ) )  x.  ( ( log `  ( ( A  /  d )  /  m ) )  x.  ( ( X `
 ( L `  m ) )  /  m ) ) ) )
116106rpcnd 10345 . . . . . . . . . 10  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  d  e.  CC )
117106rpne0d 10348 . . . . . . . . . 10  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  d  =/=  0 )
118102, 116, 117divcld 9490 . . . . . . . . 9  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( ( X `  ( L `  d ) )  / 
d )  e.  CC )
11997nncnd 9716 . . . . . . . . . 10  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  m  e.  CC )
12097nnne0d 9744 . . . . . . . . . 10  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  m  =/=  0 )
12187, 119, 120divcld 9490 . . . . . . . . 9  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( ( X `  ( L `  m ) )  /  m )  e.  CC )
122118, 121mulcld 8809 . . . . . . . 8  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( (
( X `  ( L `  d )
)  /  d )  x.  ( ( X `
 ( L `  m ) )  /  m ) )  e.  CC )
123104, 110, 122mulassd 8812 . . . . . . 7  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( (
( mmu `  d
)  x.  ( log `  ( ( A  / 
d )  /  m
) ) )  x.  ( ( ( X `
 ( L `  d ) )  / 
d )  x.  (
( X `  ( L `  m )
)  /  m ) ) )  =  ( ( mmu `  d
)  x.  ( ( log `  ( ( A  /  d )  /  m ) )  x.  ( ( ( X `  ( L `
 d ) )  /  d )  x.  ( ( X `  ( L `  m ) )  /  m ) ) ) ) )
124104, 118, 110, 121mul4d 8978 . . . . . . 7  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( (
( mmu `  d
)  x.  ( ( X `  ( L `
 d ) )  /  d ) )  x.  ( ( log `  ( ( A  / 
d )  /  m
) )  x.  (
( X `  ( L `  m )
)  /  m ) ) )  =  ( ( ( mmu `  d )  x.  ( log `  ( ( A  /  d )  /  m ) ) )  x.  ( ( ( X `  ( L `
 d ) )  /  d )  x.  ( ( X `  ( L `  m ) )  /  m ) ) ) )
12573ad2antlr 710 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  d  e.  ZZ )
12617, 18, 19, 20, 84, 125, 86dchrzrhmul 20433 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( X `  ( L `  (
d  x.  m ) ) )  =  ( ( X `  ( L `  d )
)  x.  ( X `
 ( L `  m ) ) ) )
127126oveq1d 5793 . . . . . . . . . . 11  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( ( X `  ( L `  ( d  x.  m
) ) )  / 
( d  x.  m
) )  =  ( ( ( X `  ( L `  d ) )  x.  ( X `
 ( L `  m ) ) )  /  ( d  x.  m ) ) )
128 divmuldiv 9414 . . . . . . . . . . . 12  |-  ( ( ( ( X `  ( L `  d ) )  e.  CC  /\  ( X `  ( L `
 m ) )  e.  CC )  /\  ( ( d  e.  CC  /\  d  =/=  0 )  /\  (
m  e.  CC  /\  m  =/=  0 ) ) )  ->  ( (
( X `  ( L `  d )
)  /  d )  x.  ( ( X `
 ( L `  m ) )  /  m ) )  =  ( ( ( X `
 ( L `  d ) )  x.  ( X `  ( L `  m )
) )  /  (
d  x.  m ) ) )
129102, 87, 107, 112, 128syl22anc 1188 . . . . . . . . . . 11  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( (
( X `  ( L `  d )
)  /  d )  x.  ( ( X `
 ( L `  m ) )  /  m ) )  =  ( ( ( X `
 ( L `  d ) )  x.  ( X `  ( L `  m )
) )  /  (
d  x.  m ) ) )
130127, 129eqtr4d 2291 . . . . . . . . . 10  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( ( X `  ( L `  ( d  x.  m
) ) )  / 
( d  x.  m
) )  =  ( ( ( X `  ( L `  d ) )  /  d )  x.  ( ( X `
 ( L `  m ) )  /  m ) ) )
13163ad2antrr 709 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  A  e.  CC )
132 divdiv1 9425 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  ( d  e.  CC  /\  d  =/=  0 )  /\  ( m  e.  CC  /\  m  =/=  0 ) )  -> 
( ( A  / 
d )  /  m
)  =  ( A  /  ( d  x.  m ) ) )
133131, 107, 112, 132syl3anc 1187 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( ( A  /  d )  /  m )  =  ( A  /  ( d  x.  m ) ) )
134133eqcomd 2261 . . . . . . . . . . 11  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( A  /  ( d  x.  m ) )  =  ( ( A  / 
d )  /  m
) )
135134fveq2d 5448 . . . . . . . . . 10  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( log `  ( A  /  (
d  x.  m ) ) )  =  ( log `  ( ( A  /  d )  /  m ) ) )
136130, 135oveq12d 5796 . . . . . . . . 9  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( (
( X `  ( L `  ( d  x.  m ) ) )  /  ( d  x.  m ) )  x.  ( log `  ( A  /  ( d  x.  m ) ) ) )  =  ( ( ( ( X `  ( L `  d ) )  /  d )  x.  ( ( X `
 ( L `  m ) )  /  m ) )  x.  ( log `  (
( A  /  d
)  /  m ) ) ) )
137122, 110mulcomd 8810 . . . . . . . . 9  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( (
( ( X `  ( L `  d ) )  /  d )  x.  ( ( X `
 ( L `  m ) )  /  m ) )  x.  ( log `  (
( A  /  d
)  /  m ) ) )  =  ( ( log `  (
( A  /  d
)  /  m ) )  x.  ( ( ( X `  ( L `  d )
)  /  d )  x.  ( ( X `
 ( L `  m ) )  /  m ) ) ) )
138136, 137eqtrd 2288 . . . . . . . 8  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( (
( X `  ( L `  ( d  x.  m ) ) )  /  ( d  x.  m ) )  x.  ( log `  ( A  /  ( d  x.  m ) ) ) )  =  ( ( log `  ( ( A  /  d )  /  m ) )  x.  ( ( ( X `  ( L `
 d ) )  /  d )  x.  ( ( X `  ( L `  m ) )  /  m ) ) ) )
139138oveq2d 5794 . . . . . . 7  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( (
mmu `  d )  x.  ( ( ( X `
 ( L `  ( d  x.  m
) ) )  / 
( d  x.  m
) )  x.  ( log `  ( A  / 
( d  x.  m
) ) ) ) )  =  ( ( mmu `  d )  x.  ( ( log `  ( ( A  / 
d )  /  m
) )  x.  (
( ( X `  ( L `  d ) )  /  d )  x.  ( ( X `
 ( L `  m ) )  /  m ) ) ) ) )
140123, 124, 1393eqtr4d 2298 . . . . . 6  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( (
( mmu `  d
)  x.  ( ( X `  ( L `
 d ) )  /  d ) )  x.  ( ( log `  ( ( A  / 
d )  /  m
) )  x.  (
( X `  ( L `  m )
)  /  m ) ) )  =  ( ( mmu `  d
)  x.  ( ( ( X `  ( L `  ( d  x.  m ) ) )  /  ( d  x.  m ) )  x.  ( log `  ( A  /  ( d  x.  m ) ) ) ) ) )
141115, 140eqtrd 2288 . . . . 5  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( (
( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  ( ( X `
 ( L `  m ) )  x.  ( ( log `  (
( A  /  d
)  /  m ) )  /  m ) ) )  =  ( ( mmu `  d
)  x.  ( ( ( X `  ( L `  ( d  x.  m ) ) )  /  ( d  x.  m ) )  x.  ( log `  ( A  /  ( d  x.  m ) ) ) ) ) )
142141sumeq2dv 12127 . . . 4  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (
( X `  ( L `  m )
)  x.  ( ( log `  ( ( A  /  d )  /  m ) )  /  m ) ) )  =  sum_ m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) ( ( mmu `  d )  x.  (
( ( X `  ( L `  ( d  x.  m ) ) )  /  ( d  x.  m ) )  x.  ( log `  ( A  /  ( d  x.  m ) ) ) ) ) )
143101, 142eqtrd 2288 . . 3  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (
( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( A  / 
d ) ) ) ( ( X `  ( L `  m ) )  x.  ( ( log `  ( ( A  /  d )  /  m ) )  /  m ) ) )  =  sum_ m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) ( ( mmu `  d )  x.  (
( ( X `  ( L `  ( d  x.  m ) ) )  /  ( d  x.  m ) )  x.  ( log `  ( A  /  ( d  x.  m ) ) ) ) ) )
144143sumeq2dv 12127 . 2  |-  ( ph  -> 
sum_ d  e.  ( 1 ... ( |_
`  A ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) ) ( ( X `
 ( L `  m ) )  x.  ( ( log `  (
( A  /  d
)  /  m ) )  /  m ) ) )  =  sum_ d  e.  ( 1 ... ( |_ `  A ) ) sum_ m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) ) ( ( mmu `  d )  x.  (
( ( X `  ( L `  ( d  x.  m ) ) )  /  ( d  x.  m ) )  x.  ( log `  ( A  /  ( d  x.  m ) ) ) ) ) )
14539, 70, 1443eqtr4d 2298 1  |-  ( ph  ->  ( log `  A
)  =  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) ) ( ( X `
 ( L `  m ) )  x.  ( ( log `  (
( A  /  d
)  /  m ) )  /  m ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2419   {crab 2520    C_ wss 3113   class class class wbr 3983   ` cfv 4659  (class class class)co 5778   CCcc 8689   RRcr 8690   0cc0 8691   1c1 8692    x. cmul 8696    <_ cle 8822    / cdiv 9377   NNcn 9700   ZZcz 9977   ZZ>=cuz 10183   RR+crp 10307   ...cfz 10734   |_cfl 10876   sum_csu 12109    || cdivides 12479   Basecbs 13096   0gc0g 13348   ZRHomczrh 16399  ℤ/nczn 16402   logclog 19860   mmucmu 20280  DChrcdchr 20419
This theorem is referenced by:  dchrvmasum2if  20594
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4091  ax-sep 4101  ax-nul 4109  ax-pow 4146  ax-pr 4172  ax-un 4470  ax-inf2 7296  ax-cnex 8747  ax-resscn 8748  ax-1cn 8749  ax-icn 8750  ax-addcl 8751  ax-addrcl 8752  ax-mulcl 8753  ax-mulrcl 8754  ax-mulcom 8755  ax-addass 8756  ax-mulass 8757  ax-distr 8758  ax-i2m1 8759  ax-1ne0 8760  ax-1rid 8761  ax-rnegex 8762  ax-rrecex 8763  ax-cnre 8764  ax-pre-lttri 8765  ax-pre-lttrn 8766  ax-pre-ltadd 8767  ax-pre-mulgt0 8768  ax-pre-sup 8769  ax-addf 8770  ax-mulf 8771
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2521  df-rex 2522  df-reu 2523  df-rmo 2524  df-rab 2525  df-v 2759  df-sbc 2953  df-csb 3043  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-pss 3129  df-nul 3417  df-if 3526  df-pw 3587  df-sn 3606  df-pr 3607  df-tp 3608  df-op 3609  df-uni 3788  df-int 3823  df-iun 3867  df-iin 3868  df-disj 3954  df-br 3984  df-opab 4038  df-mpt 4039  df-tr 4074  df-eprel 4263  df-id 4267  df-po 4272  df-so 4273  df-fr 4310  df-se 4311  df-we 4312  df-ord 4353  df-on 4354  df-lim 4355  df-suc 4356  df-om 4615  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fn 4670  df-f 4671  df-f1 4672  df-fo 4673  df-f1o 4674  df-fv 4675  df-isom 4676  df-ov 5781  df-oprab 5782  df-mpt2 5783  df-of 5998  df-1st 6042  df-2nd 6043  df-tpos 6154  df-iota 6211  df-riota 6258  df-recs 6342  df-rdg 6377  df-1o 6433  df-2o 6434  df-oadd 6437  df-er 6614  df-ec 6616  df-qs 6620  df-map 6728  df-pm 6729  df-ixp 6772  df-en 6818  df-dom 6819  df-sdom 6820  df-fin 6821  df-fi 7119  df-sup 7148  df-oi 7179  df-card 7526  df-cda 7748  df-pnf 8823  df-mnf 8824  df-xr 8825  df-ltxr 8826  df-le 8827  df-sub 8993  df-neg 8994  df-div 9378  df-n 9701  df-2 9758  df-3 9759  df-4 9760  df-5 9761  df-6 9762  df-7 9763  df-8 9764  df-9 9765  df-10 9766  df-n0 9919  df-z 9978  df-dec 10078  df-uz 10184  df-q 10270  df-rp 10308  df-xneg 10405  df-xadd 10406  df-xmul 10407  df-ioo 10612  df-ioc 10613  df-ico 10614  df-icc 10615  df-fz 10735  df-fzo 10823  df-fl 10877  df-mod 10926  df-seq 10999  df-exp 11057  df-fac 11241  df-bc 11268  df-hash 11290  df-shft 11513  df-cj 11535  df-re 11536  df-im 11537  df-sqr 11671  df-abs 11672  df-limsup 11896  df-clim 11913  df-rlim 11914  df-sum 12110  df-ef 12297  df-sin 12299  df-cos 12300  df-pi 12302  df-divides 12480  df-gcd 12634  df-prime 12707  df-pc 12838  df-struct 13098  df-ndx 13099  df-slot 13100  df-base 13101  df-sets 13102  df-ress 13103  df-plusg 13169  df-mulr 13170  df-starv 13171  df-sca 13172  df-vsca 13173  df-tset 13175  df-ple 13176  df-ds 13178  df-hom 13180  df-cco 13181  df-rest 13275  df-topn 13276  df-topgen 13292  df-pt 13293  df-prds 13296  df-xrs 13351  df-0g 13352  df-gsum 13353  df-qtop 13358  df-imas 13359  df-divs 13360  df-xps 13361  df-mre 13436  df-mrc 13437  df-acs 13439  df-mnd 14315  df-mhm 14363  df-submnd 14364  df-grp 14437  df-minusg 14438  df-sbg 14439  df-mulg 14440  df-subg 14566  df-nsg 14567  df-eqg 14568  df-ghm 14629  df-cntz 14741  df-cmn 15039  df-abl 15040  df-mgp 15274  df-ring 15288  df-cring 15289  df-ur 15290  df-oppr 15353  df-dvdsr 15371  df-unit 15372  df-rnghom 15444  df-subrg 15491  df-lmod 15577  df-lss 15638  df-lsp 15677  df-sra 15873  df-rgmod 15874  df-lidl 15875  df-rsp 15876  df-2idl 15932  df-xmet 16321  df-met 16322  df-bl 16323  df-mopn 16324  df-cnfld 16326  df-zrh 16403  df-zn 16406  df-top 16584  df-bases 16586  df-topon 16587  df-topsp 16588  df-cld 16704  df-ntr 16705  df-cls 16706  df-nei 16783  df-lp 16816  df-perf 16817  df-cn 16905  df-cnp 16906  df-haus 16991  df-tx 17205  df-hmeo 17394  df-fbas 17468  df-fg 17469  df-fil 17489  df-fm 17581  df-flim 17582  df-flf 17583  df-xms 17833  df-ms 17834  df-tms 17835  df-cncf 18330  df-limc 19164  df-dv 19165  df-log 19862  df-mu 20286  df-dchr 20420
  Copyright terms: Public domain W3C validator