MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrvmasumlem Unicode version

Theorem dchrvmasumlem 20674
Description: The sum of the Möbius function multiplied by a non-principal Dirichlet character, divided by  n, is bounded. Equation 9.4.16 of [Shapiro], p. 379. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
dchrmusum.g  |-  G  =  (DChr `  N )
dchrmusum.d  |-  D  =  ( Base `  G
)
dchrmusum.1  |-  .1.  =  ( 0g `  G )
dchrmusum.b  |-  ( ph  ->  X  e.  D )
dchrmusum.n1  |-  ( ph  ->  X  =/=  .1.  )
dchrmusum.f  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  a ) )
dchrmusum.c  |-  ( ph  ->  C  e.  ( 0 [,)  +oo ) )
dchrmusum.t  |-  ( ph  ->  seq  1 (  +  ,  F )  ~~>  T )
dchrmusum.2  |-  ( ph  ->  A. y  e.  ( 1 [,)  +oo )
( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  y ) )  -  T ) )  <_ 
( C  /  y
) )
Assertion
Ref Expression
dchrvmasumlem  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  n )
)  x.  ( (Λ `  n )  /  n
) ) )  e.  O ( 1 ) )
Distinct variable groups:    x, n, y,  .1.    C, n, x, y   
n, F, x, y   
x, a, y    n, N, x, y    ph, n, x    T, n, x, y   
n, Z, x, y    D, n, x, y    n, a, L, x, y    X, a, n, x, y
Allowed substitution hints:    ph( y, a)    C( a)    D( a)    T( a)    .1. ( a)    F( a)    G( x, y, n, a)    N( a)    Z( a)

Proof of Theorem dchrvmasumlem
StepHypRef Expression
1 rpvmasum.z . . . . . . . 8  |-  Z  =  (ℤ/n `  N )
2 rpvmasum.l . . . . . . . 8  |-  L  =  ( ZRHom `  Z
)
3 rpvmasum.a . . . . . . . 8  |-  ( ph  ->  N  e.  NN )
4 dchrmusum.g . . . . . . . 8  |-  G  =  (DChr `  N )
5 dchrmusum.d . . . . . . . 8  |-  D  =  ( Base `  G
)
6 dchrmusum.1 . . . . . . . 8  |-  .1.  =  ( 0g `  G )
7 dchrmusum.b . . . . . . . 8  |-  ( ph  ->  X  e.  D )
8 dchrmusum.n1 . . . . . . . 8  |-  ( ph  ->  X  =/=  .1.  )
9 dchrmusum.f . . . . . . . 8  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  a ) )
10 dchrmusum.c . . . . . . . 8  |-  ( ph  ->  C  e.  ( 0 [,)  +oo ) )
11 dchrmusum.t . . . . . . . 8  |-  ( ph  ->  seq  1 (  +  ,  F )  ~~>  T )
12 dchrmusum.2 . . . . . . . 8  |-  ( ph  ->  A. y  e.  ( 1 [,)  +oo )
( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  y ) )  -  T ) )  <_ 
( C  /  y
) )
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12dchrisumn0 20672 . . . . . . 7  |-  ( ph  ->  T  =/=  0 )
1413adantr 451 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  T  =/=  0 )
15 ifnefalse 3575 . . . . . 6  |-  ( T  =/=  0  ->  if ( T  =  0 ,  ( log `  x
) ,  0 )  =  0 )
1614, 15syl 15 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  if ( T  =  0 , 
( log `  x
) ,  0 )  =  0 )
1716oveq2d 5876 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 n ) )  x.  ( (Λ `  n
)  /  n ) )  +  if ( T  =  0 ,  ( log `  x
) ,  0 ) )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 n ) )  x.  ( (Λ `  n
)  /  n ) )  +  0 ) )
18 fzfid 11037 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 1 ... ( |_ `  x ) )  e. 
Fin )
197ad2antrr 706 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  X  e.  D )
20 elfzelz 10800 . . . . . . . . 9  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  ZZ )
2120adantl 452 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  ZZ )
224, 1, 5, 2, 19, 21dchrzrhcl 20486 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( X `  ( L `  n
) )  e.  CC )
23 elfznn 10821 . . . . . . . . . 10  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
2423adantl 452 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
25 vmacl 20358 . . . . . . . . . 10  |-  ( n  e.  NN  ->  (Λ `  n )  e.  RR )
26 nndivre 9783 . . . . . . . . . 10  |-  ( ( (Λ `  n )  e.  RR  /\  n  e.  NN )  ->  (
(Λ `  n )  /  n )  e.  RR )
2725, 26mpancom 650 . . . . . . . . 9  |-  ( n  e.  NN  ->  (
(Λ `  n )  /  n )  e.  RR )
2824, 27syl 15 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  /  n
)  e.  RR )
2928recnd 8863 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  /  n
)  e.  CC )
3022, 29mulcld 8857 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( X `  ( L `  n ) )  x.  ( (Λ `  n
)  /  n ) )  e.  CC )
3118, 30fsumcl 12208 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  n ) )  x.  ( (Λ `  n )  /  n
) )  e.  CC )
3231addid1d 9014 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 n ) )  x.  ( (Λ `  n
)  /  n ) )  +  0 )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  n ) )  x.  ( (Λ `  n )  /  n
) ) )
3317, 32eqtrd 2317 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 n ) )  x.  ( (Λ `  n
)  /  n ) )  +  if ( T  =  0 ,  ( log `  x
) ,  0 ) )  =  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  n ) )  x.  ( (Λ `  n )  /  n
) ) )
3433mpteq2dva 4108 . 2  |-  ( ph  ->  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  n ) )  x.  ( (Λ `  n )  /  n
) )  +  if ( T  =  0 ,  ( log `  x
) ,  0 ) ) )  =  ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  n ) )  x.  ( (Λ `  n )  /  n
) ) ) )
351, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12dchrvmasumif 20654 . 2  |-  ( ph  ->  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  n ) )  x.  ( (Λ `  n )  /  n
) )  +  if ( T  =  0 ,  ( log `  x
) ,  0 ) ) )  e.  O
( 1 ) )
3634, 35eqeltrrd 2360 1  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  n )
)  x.  ( (Λ `  n )  /  n
) ) )  e.  O ( 1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1625    e. wcel 1686    =/= wne 2448   A.wral 2545   ifcif 3567   class class class wbr 4025    e. cmpt 4079   ` cfv 5257  (class class class)co 5860   RRcr 8738   0cc0 8739   1c1 8740    + caddc 8742    x. cmul 8744    +oocpnf 8866    <_ cle 8870    - cmin 9039    / cdiv 9425   NNcn 9748   ZZcz 10026   RR+crp 10356   [,)cico 10660   ...cfz 10784   |_cfl 10926    seq cseq 11048   abscabs 11721    ~~> cli 11960   O (
1 )co1 11962   sum_csu 12160   Basecbs 13150   0gc0g 13402   ZRHomczrh 16453  ℤ/nczn 16456   logclog 19914  Λcvma 20331  DChrcdchr 20473
This theorem is referenced by:  dchrvmasum  20676
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-inf2 7344  ax-cnex 8795  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815  ax-pre-mulgt0 8816  ax-pre-sup 8817  ax-addf 8818  ax-mulf 8819
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-fal 1311  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-iin 3910  df-disj 3996  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-se 4355  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-isom 5266  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-of 6080  df-1st 6124  df-2nd 6125  df-tpos 6236  df-rpss 6279  df-riota 6306  df-recs 6390  df-rdg 6425  df-1o 6481  df-2o 6482  df-oadd 6485  df-omul 6486  df-er 6662  df-ec 6664  df-qs 6668  df-map 6776  df-pm 6777  df-ixp 6820  df-en 6866  df-dom 6867  df-sdom 6868  df-fin 6869  df-fi 7167  df-sup 7196  df-oi 7227  df-card 7574  df-acn 7577  df-cda 7796  df-pnf 8871  df-mnf 8872  df-xr 8873  df-ltxr 8874  df-le 8875  df-sub 9041  df-neg 9042  df-div 9426  df-nn 9749  df-2 9806  df-3 9807  df-4 9808  df-5 9809  df-6 9810  df-7 9811  df-8 9812  df-9 9813  df-10 9814  df-n0 9968  df-z 10027  df-dec 10127  df-uz 10233  df-q 10319  df-rp 10357  df-xneg 10454  df-xadd 10455  df-xmul 10456  df-ioo 10662  df-ioc 10663  df-ico 10664  df-icc 10665  df-fz 10785  df-fzo 10873  df-fl 10927  df-mod 10976  df-seq 11049  df-exp 11107  df-fac 11291  df-bc 11318  df-hash 11340  df-word 11411  df-concat 11412  df-s1 11413  df-shft 11564  df-cj 11586  df-re 11587  df-im 11588  df-sqr 11722  df-abs 11723  df-limsup 11947  df-clim 11964  df-rlim 11965  df-o1 11966  df-lo1 11967  df-sum 12161  df-ef 12351  df-e 12352  df-sin 12353  df-cos 12354  df-pi 12356  df-dvds 12534  df-gcd 12688  df-prm 12761  df-numer 12808  df-denom 12809  df-phi 12836  df-pc 12892  df-struct 13152  df-ndx 13153  df-slot 13154  df-base 13155  df-sets 13156  df-ress 13157  df-plusg 13223  df-mulr 13224  df-starv 13225  df-sca 13226  df-vsca 13227  df-tset 13229  df-ple 13230  df-ds 13232  df-hom 13234  df-cco 13235  df-rest 13329  df-topn 13330  df-topgen 13346  df-pt 13347  df-prds 13350  df-xrs 13405  df-0g 13406  df-gsum 13407  df-qtop 13412  df-imas 13413  df-divs 13414  df-xps 13415  df-mre 13490  df-mrc 13491  df-acs 13493  df-mnd 14369  df-mhm 14417  df-submnd 14418  df-grp 14491  df-minusg 14492  df-sbg 14493  df-mulg 14494  df-subg 14620  df-nsg 14621  df-eqg 14622  df-ghm 14683  df-gim 14725  df-ga 14746  df-cntz 14795  df-oppg 14821  df-od 14846  df-gex 14847  df-pgp 14848  df-lsm 14949  df-pj1 14950  df-cmn 15093  df-abl 15094  df-cyg 15167  df-dprd 15235  df-dpj 15236  df-mgp 15328  df-rng 15342  df-cring 15343  df-ur 15344  df-oppr 15407  df-dvdsr 15425  df-unit 15426  df-invr 15456  df-dvr 15467  df-rnghom 15498  df-drng 15516  df-subrg 15545  df-lmod 15631  df-lss 15692  df-lsp 15731  df-sra 15927  df-rgmod 15928  df-lidl 15929  df-rsp 15930  df-2idl 15986  df-xmet 16375  df-met 16376  df-bl 16377  df-mopn 16378  df-cnfld 16380  df-zrh 16457  df-zn 16460  df-top 16638  df-bases 16640  df-topon 16641  df-topsp 16642  df-cld 16758  df-ntr 16759  df-cls 16760  df-nei 16837  df-lp 16870  df-perf 16871  df-cn 16959  df-cnp 16960  df-haus 17045  df-cmp 17116  df-tx 17259  df-hmeo 17448  df-fbas 17522  df-fg 17523  df-fil 17543  df-fm 17635  df-flim 17636  df-flf 17637  df-xms 17887  df-ms 17888  df-tms 17889  df-cncf 18384  df-0p 19027  df-limc 19218  df-dv 19219  df-ply 19572  df-idp 19573  df-coe 19574  df-dgr 19575  df-quot 19673  df-log 19916  df-cxp 19917  df-em 20289  df-cht 20336  df-vma 20337  df-chp 20338  df-ppi 20339  df-mu 20340  df-dchr 20474
  Copyright terms: Public domain W3C validator