MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrvmasumlem1 Unicode version

Theorem dchrvmasumlem1 20644
Description: An alternative expression for a Dirichlet-weighted von Mangoldt sum in terms of the Möbius function. Equation 9.4.11 of [Shapiro], p. 377. (Contributed by Mario Carneiro, 3-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum.g  |-  G  =  (DChr `  N )
rpvmasum.d  |-  D  =  ( Base `  G
)
rpvmasum.1  |-  .1.  =  ( 0g `  G )
dchrisum.b  |-  ( ph  ->  X  e.  D )
dchrisum.n1  |-  ( ph  ->  X  =/=  .1.  )
dchrvmasum.a  |-  ( ph  ->  A  e.  RR+ )
Assertion
Ref Expression
dchrvmasumlem1  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  A ) ) ( ( X `  ( L `  n )
)  x.  ( (Λ `  n )  /  n
) )  =  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( A  / 
d ) ) ) ( ( X `  ( L `  m ) )  x.  ( ( log `  m )  /  m ) ) ) )
Distinct variable groups:    m, n,  .1.    m, d, n, A   
m, N, n    ph, d, m, n    m, Z, n    D, m, n    L, d, m, n    X, d, m, n    A, n
Allowed substitution hints:    D( d)    .1. ( d)    G( m, n, d)    N( d)    Z( d)

Proof of Theorem dchrvmasumlem1
Dummy variables  x  i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5525 . . . . 5  |-  ( n  =  ( d  x.  m )  ->  ( L `  n )  =  ( L `  ( d  x.  m
) ) )
21fveq2d 5529 . . . 4  |-  ( n  =  ( d  x.  m )  ->  ( X `  ( L `  n ) )  =  ( X `  ( L `  ( d  x.  m ) ) ) )
3 oveq2 5866 . . . . 5  |-  ( n  =  ( d  x.  m )  ->  (
( mmu `  d
)  /  n )  =  ( ( mmu `  d )  /  (
d  x.  m ) ) )
4 oveq1 5865 . . . . . 6  |-  ( n  =  ( d  x.  m )  ->  (
n  /  d )  =  ( ( d  x.  m )  / 
d ) )
54fveq2d 5529 . . . . 5  |-  ( n  =  ( d  x.  m )  ->  ( log `  ( n  / 
d ) )  =  ( log `  (
( d  x.  m
)  /  d ) ) )
63, 5oveq12d 5876 . . . 4  |-  ( n  =  ( d  x.  m )  ->  (
( ( mmu `  d )  /  n
)  x.  ( log `  ( n  /  d
) ) )  =  ( ( ( mmu `  d )  /  (
d  x.  m ) )  x.  ( log `  ( ( d  x.  m )  /  d
) ) ) )
72, 6oveq12d 5876 . . 3  |-  ( n  =  ( d  x.  m )  ->  (
( X `  ( L `  n )
)  x.  ( ( ( mmu `  d
)  /  n )  x.  ( log `  (
n  /  d ) ) ) )  =  ( ( X `  ( L `  ( d  x.  m ) ) )  x.  ( ( ( mmu `  d
)  /  ( d  x.  m ) )  x.  ( log `  (
( d  x.  m
)  /  d ) ) ) ) )
8 dchrvmasum.a . . . 4  |-  ( ph  ->  A  e.  RR+ )
98rpred 10390 . . 3  |-  ( ph  ->  A  e.  RR )
10 rpvmasum.g . . . . . 6  |-  G  =  (DChr `  N )
11 rpvmasum.z . . . . . 6  |-  Z  =  (ℤ/n `  N )
12 rpvmasum.d . . . . . 6  |-  D  =  ( Base `  G
)
13 rpvmasum.l . . . . . 6  |-  L  =  ( ZRHom `  Z
)
14 dchrisum.b . . . . . . 7  |-  ( ph  ->  X  e.  D )
1514adantr 451 . . . . . 6  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  X  e.  D )
16 elfzelz 10798 . . . . . . 7  |-  ( n  e.  ( 1 ... ( |_ `  A
) )  ->  n  e.  ZZ )
1716adantl 452 . . . . . 6  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  n  e.  ZZ )
1810, 11, 12, 13, 15, 17dchrzrhcl 20484 . . . . 5  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( X `  ( L `  n
) )  e.  CC )
1918adantrr 697 . . . 4  |-  ( (
ph  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  {
x  e.  NN  |  x  ||  n } ) )  ->  ( X `  ( L `  n
) )  e.  CC )
20 ssrab2 3258 . . . . . . . . . . 11  |-  { x  e.  NN  |  x  ||  n }  C_  NN
2120sseli 3176 . . . . . . . . . 10  |-  ( d  e.  { x  e.  NN  |  x  ||  n }  ->  d  e.  NN )
2221ad2antll 709 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  {
x  e.  NN  |  x  ||  n } ) )  ->  d  e.  NN )
23 mucl 20379 . . . . . . . . 9  |-  ( d  e.  NN  ->  (
mmu `  d )  e.  ZZ )
2422, 23syl 15 . . . . . . . 8  |-  ( (
ph  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  {
x  e.  NN  |  x  ||  n } ) )  ->  ( mmu `  d )  e.  ZZ )
2524zred 10117 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  {
x  e.  NN  |  x  ||  n } ) )  ->  ( mmu `  d )  e.  RR )
26 elfznn 10819 . . . . . . . 8  |-  ( n  e.  ( 1 ... ( |_ `  A
) )  ->  n  e.  NN )
2726ad2antrl 708 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  {
x  e.  NN  |  x  ||  n } ) )  ->  n  e.  NN )
2825, 27nndivred 9794 . . . . . 6  |-  ( (
ph  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  {
x  e.  NN  |  x  ||  n } ) )  ->  ( (
mmu `  d )  /  n )  e.  RR )
2928recnd 8861 . . . . 5  |-  ( (
ph  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  {
x  e.  NN  |  x  ||  n } ) )  ->  ( (
mmu `  d )  /  n )  e.  CC )
3027nnrpd 10389 . . . . . . . 8  |-  ( (
ph  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  {
x  e.  NN  |  x  ||  n } ) )  ->  n  e.  RR+ )
3122nnrpd 10389 . . . . . . . 8  |-  ( (
ph  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  {
x  e.  NN  |  x  ||  n } ) )  ->  d  e.  RR+ )
3230, 31rpdivcld 10407 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  {
x  e.  NN  |  x  ||  n } ) )  ->  ( n  /  d )  e.  RR+ )
3332relogcld 19974 . . . . . 6  |-  ( (
ph  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  {
x  e.  NN  |  x  ||  n } ) )  ->  ( log `  ( n  /  d
) )  e.  RR )
3433recnd 8861 . . . . 5  |-  ( (
ph  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  {
x  e.  NN  |  x  ||  n } ) )  ->  ( log `  ( n  /  d
) )  e.  CC )
3529, 34mulcld 8855 . . . 4  |-  ( (
ph  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  {
x  e.  NN  |  x  ||  n } ) )  ->  ( (
( mmu `  d
)  /  n )  x.  ( log `  (
n  /  d ) ) )  e.  CC )
3619, 35mulcld 8855 . . 3  |-  ( (
ph  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  {
x  e.  NN  |  x  ||  n } ) )  ->  ( ( X `  ( L `  n ) )  x.  ( ( ( mmu `  d )  /  n
)  x.  ( log `  ( n  /  d
) ) ) )  e.  CC )
377, 9, 36dvdsflsumcom 20428 . 2  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  A ) ) sum_ d  e.  { x  e.  NN  |  x  ||  n }  ( ( X `  ( L `  n ) )  x.  ( ( ( mmu `  d )  /  n
)  x.  ( log `  ( n  /  d
) ) ) )  =  sum_ d  e.  ( 1 ... ( |_
`  A ) )
sum_ m  e.  (
1 ... ( |_ `  ( A  /  d
) ) ) ( ( X `  ( L `  ( d  x.  m ) ) )  x.  ( ( ( mmu `  d )  /  ( d  x.  m ) )  x.  ( log `  (
( d  x.  m
)  /  d ) ) ) ) )
38 vmaf 20357 . . . . . . . . . . . . 13  |- Λ : NN --> RR
3938a1i 10 . . . . . . . . . . . 12  |-  ( ph  -> Λ : NN --> RR )
40 ax-resscn 8794 . . . . . . . . . . . 12  |-  RR  C_  CC
41 fss 5397 . . . . . . . . . . . 12  |-  ( (Λ : NN --> RR  /\  RR  C_  CC )  -> Λ : NN --> CC )
4239, 40, 41sylancl 643 . . . . . . . . . . 11  |-  ( ph  -> Λ : NN --> CC )
43 vmasum 20455 . . . . . . . . . . . . . 14  |-  ( m  e.  NN  ->  sum_ i  e.  { x  e.  NN  |  x  ||  m } 
(Λ `  i )  =  ( log `  m
) )
4443adantl 452 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  NN )  ->  sum_ i  e.  { x  e.  NN  |  x  ||  m } 
(Λ `  i )  =  ( log `  m
) )
4544eqcomd 2288 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  ( log `  m )  =  sum_ i  e.  { x  e.  NN  |  x  ||  m }  (Λ `  i
) )
4645mpteq2dva 4106 . . . . . . . . . . 11  |-  ( ph  ->  ( m  e.  NN  |->  ( log `  m ) )  =  ( m  e.  NN  |->  sum_ i  e.  { x  e.  NN  |  x  ||  m } 
(Λ `  i ) ) )
4742, 46muinv 20433 . . . . . . . . . 10  |-  ( ph  -> Λ 
=  ( n  e.  NN  |->  sum_ d  e.  {
x  e.  NN  |  x  ||  n }  (
( mmu `  d
)  x.  ( ( m  e.  NN  |->  ( log `  m ) ) `  ( n  /  d ) ) ) ) )
4847fveq1d 5527 . . . . . . . . 9  |-  ( ph  ->  (Λ `  n )  =  ( ( n  e.  NN  |->  sum_ d  e.  { x  e.  NN  |  x  ||  n } 
( ( mmu `  d )  x.  (
( m  e.  NN  |->  ( log `  m ) ) `  ( n  /  d ) ) ) ) `  n
) )
49 sumex 12160 . . . . . . . . . 10  |-  sum_ d  e.  { x  e.  NN  |  x  ||  n } 
( ( mmu `  d )  x.  (
( m  e.  NN  |->  ( log `  m ) ) `  ( n  /  d ) ) )  e.  _V
50 eqid 2283 . . . . . . . . . . 11  |-  ( n  e.  NN  |->  sum_ d  e.  { x  e.  NN  |  x  ||  n } 
( ( mmu `  d )  x.  (
( m  e.  NN  |->  ( log `  m ) ) `  ( n  /  d ) ) ) )  =  ( n  e.  NN  |->  sum_ d  e.  { x  e.  NN  |  x  ||  n }  ( (
mmu `  d )  x.  ( ( m  e.  NN  |->  ( log `  m
) ) `  (
n  /  d ) ) ) )
5150fvmpt2 5608 . . . . . . . . . 10  |-  ( ( n  e.  NN  /\  sum_ d  e.  { x  e.  NN  |  x  ||  n }  ( (
mmu `  d )  x.  ( ( m  e.  NN  |->  ( log `  m
) ) `  (
n  /  d ) ) )  e.  _V )  ->  ( ( n  e.  NN  |->  sum_ d  e.  { x  e.  NN  |  x  ||  n } 
( ( mmu `  d )  x.  (
( m  e.  NN  |->  ( log `  m ) ) `  ( n  /  d ) ) ) ) `  n
)  =  sum_ d  e.  { x  e.  NN  |  x  ||  n } 
( ( mmu `  d )  x.  (
( m  e.  NN  |->  ( log `  m ) ) `  ( n  /  d ) ) ) )
5226, 49, 51sylancl 643 . . . . . . . . 9  |-  ( n  e.  ( 1 ... ( |_ `  A
) )  ->  (
( n  e.  NN  |->  sum_ d  e.  { x  e.  NN  |  x  ||  n }  ( (
mmu `  d )  x.  ( ( m  e.  NN  |->  ( log `  m
) ) `  (
n  /  d ) ) ) ) `  n )  =  sum_ d  e.  { x  e.  NN  |  x  ||  n }  ( (
mmu `  d )  x.  ( ( m  e.  NN  |->  ( log `  m
) ) `  (
n  /  d ) ) ) )
5348, 52sylan9eq 2335 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  (Λ `  n
)  =  sum_ d  e.  { x  e.  NN  |  x  ||  n } 
( ( mmu `  d )  x.  (
( m  e.  NN  |->  ( log `  m ) ) `  ( n  /  d ) ) ) )
54 breq1 4026 . . . . . . . . . . . . . . 15  |-  ( x  =  d  ->  (
x  ||  n  <->  d  ||  n ) )
5554elrab 2923 . . . . . . . . . . . . . 14  |-  ( d  e.  { x  e.  NN  |  x  ||  n }  <->  ( d  e.  NN  /\  d  ||  n ) )
5655simprbi 450 . . . . . . . . . . . . 13  |-  ( d  e.  { x  e.  NN  |  x  ||  n }  ->  d  ||  n )
5756adantl 452 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  d  e. 
{ x  e.  NN  |  x  ||  n }
)  ->  d  ||  n )
5826adantl 452 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  n  e.  NN )
59 nndivdvds 12537 . . . . . . . . . . . . 13  |-  ( ( n  e.  NN  /\  d  e.  NN )  ->  ( d  ||  n  <->  ( n  /  d )  e.  NN ) )
6058, 21, 59syl2an 463 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  d  e. 
{ x  e.  NN  |  x  ||  n }
)  ->  ( d  ||  n  <->  ( n  / 
d )  e.  NN ) )
6157, 60mpbid 201 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  d  e. 
{ x  e.  NN  |  x  ||  n }
)  ->  ( n  /  d )  e.  NN )
62 fveq2 5525 . . . . . . . . . . . 12  |-  ( m  =  ( n  / 
d )  ->  ( log `  m )  =  ( log `  (
n  /  d ) ) )
63 eqid 2283 . . . . . . . . . . . 12  |-  ( m  e.  NN  |->  ( log `  m ) )  =  ( m  e.  NN  |->  ( log `  m ) )
64 fvex 5539 . . . . . . . . . . . 12  |-  ( log `  ( n  /  d
) )  e.  _V
6562, 63, 64fvmpt 5602 . . . . . . . . . . 11  |-  ( ( n  /  d )  e.  NN  ->  (
( m  e.  NN  |->  ( log `  m ) ) `  ( n  /  d ) )  =  ( log `  (
n  /  d ) ) )
6661, 65syl 15 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  d  e. 
{ x  e.  NN  |  x  ||  n }
)  ->  ( (
m  e.  NN  |->  ( log `  m ) ) `  ( n  /  d ) )  =  ( log `  (
n  /  d ) ) )
6766oveq2d 5874 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  d  e. 
{ x  e.  NN  |  x  ||  n }
)  ->  ( (
mmu `  d )  x.  ( ( m  e.  NN  |->  ( log `  m
) ) `  (
n  /  d ) ) )  =  ( ( mmu `  d
)  x.  ( log `  ( n  /  d
) ) ) )
6867sumeq2dv 12176 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  sum_ d  e. 
{ x  e.  NN  |  x  ||  n } 
( ( mmu `  d )  x.  (
( m  e.  NN  |->  ( log `  m ) ) `  ( n  /  d ) ) )  =  sum_ d  e.  { x  e.  NN  |  x  ||  n } 
( ( mmu `  d )  x.  ( log `  ( n  / 
d ) ) ) )
6953, 68eqtrd 2315 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  (Λ `  n
)  =  sum_ d  e.  { x  e.  NN  |  x  ||  n } 
( ( mmu `  d )  x.  ( log `  ( n  / 
d ) ) ) )
7069oveq1d 5873 . . . . . 6  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (Λ `  n )  /  n
)  =  ( sum_ d  e.  { x  e.  NN  |  x  ||  n }  ( (
mmu `  d )  x.  ( log `  (
n  /  d ) ) )  /  n
) )
71 fzfid 11035 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( 1 ... n )  e. 
Fin )
72 sgmss 20344 . . . . . . . . 9  |-  ( n  e.  NN  ->  { x  e.  NN  |  x  ||  n }  C_  ( 1 ... n ) )
7358, 72syl 15 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  { x  e.  NN  |  x  ||  n }  C_  ( 1 ... n ) )
74 ssfi 7083 . . . . . . . 8  |-  ( ( ( 1 ... n
)  e.  Fin  /\  { x  e.  NN  |  x  ||  n }  C_  ( 1 ... n
) )  ->  { x  e.  NN  |  x  ||  n }  e.  Fin )
7571, 73, 74syl2anc 642 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  { x  e.  NN  |  x  ||  n }  e.  Fin )
7658nncnd 9762 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  n  e.  CC )
7724zcnd 10118 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  {
x  e.  NN  |  x  ||  n } ) )  ->  ( mmu `  d )  e.  CC )
7877anassrs 629 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  d  e. 
{ x  e.  NN  |  x  ||  n }
)  ->  ( mmu `  d )  e.  CC )
7934anassrs 629 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  d  e. 
{ x  e.  NN  |  x  ||  n }
)  ->  ( log `  ( n  /  d
) )  e.  CC )
8078, 79mulcld 8855 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  d  e. 
{ x  e.  NN  |  x  ||  n }
)  ->  ( (
mmu `  d )  x.  ( log `  (
n  /  d ) ) )  e.  CC )
8158nnne0d 9790 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  n  =/=  0 )
8275, 76, 80, 81fsumdivc 12248 . . . . . 6  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( sum_ d  e.  { x  e.  NN  |  x  ||  n }  ( (
mmu `  d )  x.  ( log `  (
n  /  d ) ) )  /  n
)  =  sum_ d  e.  { x  e.  NN  |  x  ||  n } 
( ( ( mmu `  d )  x.  ( log `  ( n  / 
d ) ) )  /  n ) )
8321adantl 452 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  d  e. 
{ x  e.  NN  |  x  ||  n }
)  ->  d  e.  NN )
8483, 23syl 15 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  d  e. 
{ x  e.  NN  |  x  ||  n }
)  ->  ( mmu `  d )  e.  ZZ )
8584zcnd 10118 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  d  e. 
{ x  e.  NN  |  x  ||  n }
)  ->  ( mmu `  d )  e.  CC )
8676adantr 451 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  d  e. 
{ x  e.  NN  |  x  ||  n }
)  ->  n  e.  CC )
8781adantr 451 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  d  e. 
{ x  e.  NN  |  x  ||  n }
)  ->  n  =/=  0 )
8885, 79, 86, 87div23d 9573 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  d  e. 
{ x  e.  NN  |  x  ||  n }
)  ->  ( (
( mmu `  d
)  x.  ( log `  ( n  /  d
) ) )  /  n )  =  ( ( ( mmu `  d )  /  n
)  x.  ( log `  ( n  /  d
) ) ) )
8988sumeq2dv 12176 . . . . . 6  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  sum_ d  e. 
{ x  e.  NN  |  x  ||  n } 
( ( ( mmu `  d )  x.  ( log `  ( n  / 
d ) ) )  /  n )  = 
sum_ d  e.  {
x  e.  NN  |  x  ||  n }  (
( ( mmu `  d )  /  n
)  x.  ( log `  ( n  /  d
) ) ) )
9070, 82, 893eqtrd 2319 . . . . 5  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (Λ `  n )  /  n
)  =  sum_ d  e.  { x  e.  NN  |  x  ||  n } 
( ( ( mmu `  d )  /  n
)  x.  ( log `  ( n  /  d
) ) ) )
9190oveq2d 5874 . . . 4  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( X `  ( L `  n ) )  x.  ( (Λ `  n
)  /  n ) )  =  ( ( X `  ( L `
 n ) )  x.  sum_ d  e.  {
x  e.  NN  |  x  ||  n }  (
( ( mmu `  d )  /  n
)  x.  ( log `  ( n  /  d
) ) ) ) )
9235anassrs 629 . . . . 5  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  d  e. 
{ x  e.  NN  |  x  ||  n }
)  ->  ( (
( mmu `  d
)  /  n )  x.  ( log `  (
n  /  d ) ) )  e.  CC )
9375, 18, 92fsummulc2 12246 . . . 4  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( X `  ( L `  n ) )  x. 
sum_ d  e.  {
x  e.  NN  |  x  ||  n }  (
( ( mmu `  d )  /  n
)  x.  ( log `  ( n  /  d
) ) ) )  =  sum_ d  e.  {
x  e.  NN  |  x  ||  n }  (
( X `  ( L `  n )
)  x.  ( ( ( mmu `  d
)  /  n )  x.  ( log `  (
n  /  d ) ) ) ) )
9491, 93eqtrd 2315 . . 3  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( X `  ( L `  n ) )  x.  ( (Λ `  n
)  /  n ) )  =  sum_ d  e.  { x  e.  NN  |  x  ||  n } 
( ( X `  ( L `  n ) )  x.  ( ( ( mmu `  d
)  /  n )  x.  ( log `  (
n  /  d ) ) ) ) )
9594sumeq2dv 12176 . 2  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  A ) ) ( ( X `  ( L `  n )
)  x.  ( (Λ `  n )  /  n
) )  =  sum_ n  e.  ( 1 ... ( |_ `  A
) ) sum_ d  e.  { x  e.  NN  |  x  ||  n } 
( ( X `  ( L `  n ) )  x.  ( ( ( mmu `  d
)  /  n )  x.  ( log `  (
n  /  d ) ) ) ) )
96 fzfid 11035 . . . . 5  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( 1 ... ( |_ `  ( A  /  d
) ) )  e. 
Fin )
9714adantr 451 . . . . . . 7  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  X  e.  D )
98 elfzelz 10798 . . . . . . . 8  |-  ( d  e.  ( 1 ... ( |_ `  A
) )  ->  d  e.  ZZ )
9998adantl 452 . . . . . . 7  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  d  e.  ZZ )
10010, 11, 12, 13, 97, 99dchrzrhcl 20484 . . . . . 6  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( X `  ( L `  d
) )  e.  CC )
101 fznnfl 10966 . . . . . . . . . . . 12  |-  ( A  e.  RR  ->  (
d  e.  ( 1 ... ( |_ `  A ) )  <->  ( d  e.  NN  /\  d  <_  A ) ) )
1029, 101syl 15 . . . . . . . . . . 11  |-  ( ph  ->  ( d  e.  ( 1 ... ( |_
`  A ) )  <-> 
( d  e.  NN  /\  d  <_  A )
) )
103102simprbda 606 . . . . . . . . . 10  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  d  e.  NN )
104103, 23syl 15 . . . . . . . . 9  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( mmu `  d )  e.  ZZ )
105104zred 10117 . . . . . . . 8  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( mmu `  d )  e.  RR )
106105, 103nndivred 9794 . . . . . . 7  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (
mmu `  d )  /  d )  e.  RR )
107106recnd 8861 . . . . . 6  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (
mmu `  d )  /  d )  e.  CC )
108100, 107mulcld 8855 . . . . 5  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  e.  CC )
10914ad2antrr 706 . . . . . . 7  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  X  e.  D )
110 elfzelz 10798 . . . . . . . 8  |-  ( m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) )  ->  m  e.  ZZ )
111110adantl 452 . . . . . . 7  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  m  e.  ZZ )
11210, 11, 12, 13, 109, 111dchrzrhcl 20484 . . . . . 6  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( X `  ( L `  m
) )  e.  CC )
113 elfznn 10819 . . . . . . . . . . 11  |-  ( m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) )  ->  m  e.  NN )
114113adantl 452 . . . . . . . . . 10  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  m  e.  NN )
115114nnrpd 10389 . . . . . . . . 9  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  m  e.  RR+ )
116115relogcld 19974 . . . . . . . 8  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( log `  m )  e.  RR )
117116, 114nndivred 9794 . . . . . . 7  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( ( log `  m )  /  m )  e.  RR )
118117recnd 8861 . . . . . 6  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( ( log `  m )  /  m )  e.  CC )
119112, 118mulcld 8855 . . . . 5  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( ( X `  ( L `  m ) )  x.  ( ( log `  m
)  /  m ) )  e.  CC )
12096, 108, 119fsummulc2 12246 . . . 4  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (
( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( A  / 
d ) ) ) ( ( X `  ( L `  m ) )  x.  ( ( log `  m )  /  m ) ) )  =  sum_ m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (
( X `  ( L `  m )
)  x.  ( ( log `  m )  /  m ) ) ) )
121100adantr 451 . . . . . . 7  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( X `  ( L `  d
) )  e.  CC )
122107adantr 451 . . . . . . 7  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( (
mmu `  d )  /  d )  e.  CC )
123121, 122, 112, 118mul4d 9024 . . . . . 6  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( (
( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  ( ( X `
 ( L `  m ) )  x.  ( ( log `  m
)  /  m ) ) )  =  ( ( ( X `  ( L `  d ) )  x.  ( X `
 ( L `  m ) ) )  x.  ( ( ( mmu `  d )  /  d )  x.  ( ( log `  m
)  /  m ) ) ) )
12498ad2antlr 707 . . . . . . . 8  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  d  e.  ZZ )
12510, 11, 12, 13, 109, 124, 111dchrzrhmul 20485 . . . . . . 7  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( X `  ( L `  (
d  x.  m ) ) )  =  ( ( X `  ( L `  d )
)  x.  ( X `
 ( L `  m ) ) ) )
126105adantr 451 . . . . . . . . . 10  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( mmu `  d )  e.  RR )
127126recnd 8861 . . . . . . . . 9  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( mmu `  d )  e.  CC )
128116recnd 8861 . . . . . . . . 9  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( log `  m )  e.  CC )
129103nnrpd 10389 . . . . . . . . . . . 12  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  d  e.  RR+ )
130129adantr 451 . . . . . . . . . . 11  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  d  e.  RR+ )
131130, 115rpmulcld 10406 . . . . . . . . . 10  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( d  x.  m )  e.  RR+ )
132131rpcnne0d 10399 . . . . . . . . 9  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( (
d  x.  m )  e.  CC  /\  (
d  x.  m )  =/=  0 ) )
133 div23 9443 . . . . . . . . 9  |-  ( ( ( mmu `  d
)  e.  CC  /\  ( log `  m )  e.  CC  /\  (
( d  x.  m
)  e.  CC  /\  ( d  x.  m
)  =/=  0 ) )  ->  ( (
( mmu `  d
)  x.  ( log `  m ) )  / 
( d  x.  m
) )  =  ( ( ( mmu `  d )  /  (
d  x.  m ) )  x.  ( log `  m ) ) )
134127, 128, 132, 133syl3anc 1182 . . . . . . . 8  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( (
( mmu `  d
)  x.  ( log `  m ) )  / 
( d  x.  m
) )  =  ( ( ( mmu `  d )  /  (
d  x.  m ) )  x.  ( log `  m ) ) )
135130rpcnne0d 10399 . . . . . . . . 9  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( d  e.  CC  /\  d  =/=  0 ) )
136115rpcnne0d 10399 . . . . . . . . 9  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( m  e.  CC  /\  m  =/=  0 ) )
137 divmuldiv 9460 . . . . . . . . 9  |-  ( ( ( ( mmu `  d )  e.  CC  /\  ( log `  m
)  e.  CC )  /\  ( ( d  e.  CC  /\  d  =/=  0 )  /\  (
m  e.  CC  /\  m  =/=  0 ) ) )  ->  ( (
( mmu `  d
)  /  d )  x.  ( ( log `  m )  /  m
) )  =  ( ( ( mmu `  d )  x.  ( log `  m ) )  /  ( d  x.  m ) ) )
138127, 128, 135, 136, 137syl22anc 1183 . . . . . . . 8  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( (
( mmu `  d
)  /  d )  x.  ( ( log `  m )  /  m
) )  =  ( ( ( mmu `  d )  x.  ( log `  m ) )  /  ( d  x.  m ) ) )
139114nncnd 9762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  m  e.  CC )
140130rpcnd 10392 . . . . . . . . . . 11  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  d  e.  CC )
141130rpne0d 10395 . . . . . . . . . . 11  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  d  =/=  0 )
142139, 140, 141divcan3d 9541 . . . . . . . . . 10  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( (
d  x.  m )  /  d )  =  m )
143142fveq2d 5529 . . . . . . . . 9  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( log `  ( ( d  x.  m )  /  d
) )  =  ( log `  m ) )
144143oveq2d 5874 . . . . . . . 8  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( (
( mmu `  d
)  /  ( d  x.  m ) )  x.  ( log `  (
( d  x.  m
)  /  d ) ) )  =  ( ( ( mmu `  d )  /  (
d  x.  m ) )  x.  ( log `  m ) ) )
145134, 138, 1443eqtr4rd 2326 . . . . . . 7  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( (
( mmu `  d
)  /  ( d  x.  m ) )  x.  ( log `  (
( d  x.  m
)  /  d ) ) )  =  ( ( ( mmu `  d )  /  d
)  x.  ( ( log `  m )  /  m ) ) )
146125, 145oveq12d 5876 . . . . . 6  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( ( X `  ( L `  ( d  x.  m
) ) )  x.  ( ( ( mmu `  d )  /  (
d  x.  m ) )  x.  ( log `  ( ( d  x.  m )  /  d
) ) ) )  =  ( ( ( X `  ( L `
 d ) )  x.  ( X `  ( L `  m ) ) )  x.  (
( ( mmu `  d )  /  d
)  x.  ( ( log `  m )  /  m ) ) ) )
147123, 146eqtr4d 2318 . . . . 5  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( (
( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  ( ( X `
 ( L `  m ) )  x.  ( ( log `  m
)  /  m ) ) )  =  ( ( X `  ( L `  ( d  x.  m ) ) )  x.  ( ( ( mmu `  d )  /  ( d  x.  m ) )  x.  ( log `  (
( d  x.  m
)  /  d ) ) ) ) )
148147sumeq2dv 12176 . . . 4  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (
( X `  ( L `  m )
)  x.  ( ( log `  m )  /  m ) ) )  =  sum_ m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) ( ( X `  ( L `  ( d  x.  m ) ) )  x.  ( ( ( mmu `  d
)  /  ( d  x.  m ) )  x.  ( log `  (
( d  x.  m
)  /  d ) ) ) ) )
149120, 148eqtrd 2315 . . 3  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (
( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( A  / 
d ) ) ) ( ( X `  ( L `  m ) )  x.  ( ( log `  m )  /  m ) ) )  =  sum_ m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) ( ( X `  ( L `  ( d  x.  m ) ) )  x.  ( ( ( mmu `  d
)  /  ( d  x.  m ) )  x.  ( log `  (
( d  x.  m
)  /  d ) ) ) ) )
150149sumeq2dv 12176 . 2  |-  ( ph  -> 
sum_ d  e.  ( 1 ... ( |_
`  A ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) ) ( ( X `
 ( L `  m ) )  x.  ( ( log `  m
)  /  m ) ) )  =  sum_ d  e.  ( 1 ... ( |_ `  A ) ) sum_ m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) ) ( ( X `
 ( L `  ( d  x.  m
) ) )  x.  ( ( ( mmu `  d )  /  (
d  x.  m ) )  x.  ( log `  ( ( d  x.  m )  /  d
) ) ) ) )
15137, 95, 1503eqtr4d 2325 1  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  A ) ) ( ( X `  ( L `  n )
)  x.  ( (Λ `  n )  /  n
) )  =  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( A  / 
d ) ) ) ( ( X `  ( L `  m ) )  x.  ( ( log `  m )  /  m ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   {crab 2547   _Vcvv 2788    C_ wss 3152   class class class wbr 4023    e. cmpt 4077   -->wf 5251   ` cfv 5255  (class class class)co 5858   Fincfn 6863   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    x. cmul 8742    <_ cle 8868    / cdiv 9423   NNcn 9746   ZZcz 10024   RR+crp 10354   ...cfz 10782   |_cfl 10924   sum_csu 12158    || cdivides 12531   Basecbs 13148   0gc0g 13400   ZRHomczrh 16451  ℤ/nczn 16454   logclog 19912  Λcvma 20329   mmucmu 20332  DChrcdchr 20471
This theorem is referenced by:  dchrvmasum2if  20646
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-disj 3994  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-tpos 6234  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-ec 6662  df-qs 6666  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-ioc 10661  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-fac 11289  df-bc 11316  df-hash 11338  df-shft 11562  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-limsup 11945  df-clim 11962  df-rlim 11963  df-sum 12159  df-ef 12349  df-sin 12351  df-cos 12352  df-pi 12354  df-dvds 12532  df-gcd 12686  df-prm 12759  df-pc 12890  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-divs 13412  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-mhm 14415  df-submnd 14416  df-grp 14489  df-minusg 14490  df-sbg 14491  df-mulg 14492  df-subg 14618  df-nsg 14619  df-eqg 14620  df-ghm 14681  df-cntz 14793  df-cmn 15091  df-abl 15092  df-mgp 15326  df-rng 15340  df-cring 15341  df-ur 15342  df-oppr 15405  df-dvdsr 15423  df-unit 15424  df-rnghom 15496  df-subrg 15543  df-lmod 15629  df-lss 15690  df-lsp 15729  df-sra 15925  df-rgmod 15926  df-lidl 15927  df-rsp 15928  df-2idl 15984  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-zrh 16455  df-zn 16458  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cld 16756  df-ntr 16757  df-cls 16758  df-nei 16835  df-lp 16868  df-perf 16869  df-cn 16957  df-cnp 16958  df-haus 17043  df-tx 17257  df-hmeo 17446  df-fbas 17520  df-fg 17521  df-fil 17541  df-fm 17633  df-flim 17634  df-flf 17635  df-xms 17885  df-ms 17886  df-tms 17887  df-cncf 18382  df-limc 19216  df-dv 19217  df-log 19914  df-vma 20335  df-mu 20338  df-dchr 20472
  Copyright terms: Public domain W3C validator