MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dcubic1 Unicode version

Theorem dcubic1 20554
Description: Forward direction of dcubic 20555: the claimed formula produces solutions to the cubic equation. (Contributed by Mario Carneiro, 25-Apr-2015.)
Hypotheses
Ref Expression
dcubic.c  |-  ( ph  ->  P  e.  CC )
dcubic.d  |-  ( ph  ->  Q  e.  CC )
dcubic.x  |-  ( ph  ->  X  e.  CC )
dcubic.t  |-  ( ph  ->  T  e.  CC )
dcubic.3  |-  ( ph  ->  ( T ^ 3 )  =  ( G  -  N ) )
dcubic.g  |-  ( ph  ->  G  e.  CC )
dcubic.2  |-  ( ph  ->  ( G ^ 2 )  =  ( ( N ^ 2 )  +  ( M ^
3 ) ) )
dcubic.m  |-  ( ph  ->  M  =  ( P  /  3 ) )
dcubic.n  |-  ( ph  ->  N  =  ( Q  /  2 ) )
dcubic.0  |-  ( ph  ->  T  =/=  0 )
dcubic1.x  |-  ( ph  ->  X  =  ( T  -  ( M  /  T ) ) )
Assertion
Ref Expression
dcubic1  |-  ( ph  ->  ( ( X ^
3 )  +  ( ( P  x.  X
)  +  Q ) )  =  0 )

Proof of Theorem dcubic1
StepHypRef Expression
1 dcubic.3 . . . . . . 7  |-  ( ph  ->  ( T ^ 3 )  =  ( G  -  N ) )
21oveq1d 6037 . . . . . 6  |-  ( ph  ->  ( ( T ^
3 ) ^ 2 )  =  ( ( G  -  N ) ^ 2 ) )
3 dcubic.g . . . . . . 7  |-  ( ph  ->  G  e.  CC )
4 dcubic.n . . . . . . . 8  |-  ( ph  ->  N  =  ( Q  /  2 ) )
5 dcubic.d . . . . . . . . 9  |-  ( ph  ->  Q  e.  CC )
65halfcld 10146 . . . . . . . 8  |-  ( ph  ->  ( Q  /  2
)  e.  CC )
74, 6eqeltrd 2463 . . . . . . 7  |-  ( ph  ->  N  e.  CC )
8 binom2sub 11427 . . . . . . 7  |-  ( ( G  e.  CC  /\  N  e.  CC )  ->  ( ( G  -  N ) ^ 2 )  =  ( ( ( G ^ 2 )  -  ( 2  x.  ( G  x.  N ) ) )  +  ( N ^
2 ) ) )
93, 7, 8syl2anc 643 . . . . . 6  |-  ( ph  ->  ( ( G  -  N ) ^ 2 )  =  ( ( ( G ^ 2 )  -  ( 2  x.  ( G  x.  N ) ) )  +  ( N ^
2 ) ) )
10 dcubic.2 . . . . . . . 8  |-  ( ph  ->  ( G ^ 2 )  =  ( ( N ^ 2 )  +  ( M ^
3 ) ) )
11 2cn 10004 . . . . . . . . . . 11  |-  2  e.  CC
1211a1i 11 . . . . . . . . . 10  |-  ( ph  ->  2  e.  CC )
1312, 3, 7mul12d 9209 . . . . . . . . 9  |-  ( ph  ->  ( 2  x.  ( G  x.  N )
)  =  ( G  x.  ( 2  x.  N ) ) )
144oveq2d 6038 . . . . . . . . . . 11  |-  ( ph  ->  ( 2  x.  N
)  =  ( 2  x.  ( Q  / 
2 ) ) )
15 2ne0 10017 . . . . . . . . . . . . 13  |-  2  =/=  0
1615a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  2  =/=  0 )
175, 12, 16divcan2d 9726 . . . . . . . . . . 11  |-  ( ph  ->  ( 2  x.  ( Q  /  2 ) )  =  Q )
1814, 17eqtrd 2421 . . . . . . . . . 10  |-  ( ph  ->  ( 2  x.  N
)  =  Q )
1918oveq2d 6038 . . . . . . . . 9  |-  ( ph  ->  ( G  x.  (
2  x.  N ) )  =  ( G  x.  Q ) )
203, 5mulcomd 9044 . . . . . . . . 9  |-  ( ph  ->  ( G  x.  Q
)  =  ( Q  x.  G ) )
2113, 19, 203eqtrd 2425 . . . . . . . 8  |-  ( ph  ->  ( 2  x.  ( G  x.  N )
)  =  ( Q  x.  G ) )
2210, 21oveq12d 6040 . . . . . . 7  |-  ( ph  ->  ( ( G ^
2 )  -  (
2  x.  ( G  x.  N ) ) )  =  ( ( ( N ^ 2 )  +  ( M ^ 3 ) )  -  ( Q  x.  G ) ) )
2322oveq1d 6037 . . . . . 6  |-  ( ph  ->  ( ( ( G ^ 2 )  -  ( 2  x.  ( G  x.  N )
) )  +  ( N ^ 2 ) )  =  ( ( ( ( N ^
2 )  +  ( M ^ 3 ) )  -  ( Q  x.  G ) )  +  ( N ^
2 ) ) )
242, 9, 233eqtrd 2425 . . . . 5  |-  ( ph  ->  ( ( T ^
3 ) ^ 2 )  =  ( ( ( ( N ^
2 )  +  ( M ^ 3 ) )  -  ( Q  x.  G ) )  +  ( N ^
2 ) ) )
257sqcld 11450 . . . . . . 7  |-  ( ph  ->  ( N ^ 2 )  e.  CC )
26 dcubic.m . . . . . . . . 9  |-  ( ph  ->  M  =  ( P  /  3 ) )
27 dcubic.c . . . . . . . . . 10  |-  ( ph  ->  P  e.  CC )
28 3cn 10006 . . . . . . . . . . 11  |-  3  e.  CC
2928a1i 11 . . . . . . . . . 10  |-  ( ph  ->  3  e.  CC )
30 3ne0 10019 . . . . . . . . . . 11  |-  3  =/=  0
3130a1i 11 . . . . . . . . . 10  |-  ( ph  ->  3  =/=  0 )
3227, 29, 31divcld 9724 . . . . . . . . 9  |-  ( ph  ->  ( P  /  3
)  e.  CC )
3326, 32eqeltrd 2463 . . . . . . . 8  |-  ( ph  ->  M  e.  CC )
34 3nn0 10173 . . . . . . . 8  |-  3  e.  NN0
35 expcl 11328 . . . . . . . 8  |-  ( ( M  e.  CC  /\  3  e.  NN0 )  -> 
( M ^ 3 )  e.  CC )
3633, 34, 35sylancl 644 . . . . . . 7  |-  ( ph  ->  ( M ^ 3 )  e.  CC )
3725, 36addcld 9042 . . . . . 6  |-  ( ph  ->  ( ( N ^
2 )  +  ( M ^ 3 ) )  e.  CC )
385, 3mulcld 9043 . . . . . 6  |-  ( ph  ->  ( Q  x.  G
)  e.  CC )
3937, 25, 38addsubd 9366 . . . . 5  |-  ( ph  ->  ( ( ( ( N ^ 2 )  +  ( M ^
3 ) )  +  ( N ^ 2 ) )  -  ( Q  x.  G )
)  =  ( ( ( ( N ^
2 )  +  ( M ^ 3 ) )  -  ( Q  x.  G ) )  +  ( N ^
2 ) ) )
4025, 36, 25add32d 9222 . . . . . . 7  |-  ( ph  ->  ( ( ( N ^ 2 )  +  ( M ^ 3 ) )  +  ( N ^ 2 ) )  =  ( ( ( N ^ 2 )  +  ( N ^ 2 ) )  +  ( M ^
3 ) ) )
41252timesd 10144 . . . . . . . 8  |-  ( ph  ->  ( 2  x.  ( N ^ 2 ) )  =  ( ( N ^ 2 )  +  ( N ^ 2 ) ) )
4241oveq1d 6037 . . . . . . 7  |-  ( ph  ->  ( ( 2  x.  ( N ^ 2 ) )  +  ( M ^ 3 ) )  =  ( ( ( N ^ 2 )  +  ( N ^ 2 ) )  +  ( M ^
3 ) ) )
4340, 42eqtr4d 2424 . . . . . 6  |-  ( ph  ->  ( ( ( N ^ 2 )  +  ( M ^ 3 ) )  +  ( N ^ 2 ) )  =  ( ( 2  x.  ( N ^ 2 ) )  +  ( M ^
3 ) ) )
4443oveq1d 6037 . . . . 5  |-  ( ph  ->  ( ( ( ( N ^ 2 )  +  ( M ^
3 ) )  +  ( N ^ 2 ) )  -  ( Q  x.  G )
)  =  ( ( ( 2  x.  ( N ^ 2 ) )  +  ( M ^
3 ) )  -  ( Q  x.  G
) ) )
4524, 39, 443eqtr2d 2427 . . . 4  |-  ( ph  ->  ( ( T ^
3 ) ^ 2 )  =  ( ( ( 2  x.  ( N ^ 2 ) )  +  ( M ^
3 ) )  -  ( Q  x.  G
) ) )
465, 3, 7subdid 9423 . . . . . . 7  |-  ( ph  ->  ( Q  x.  ( G  -  N )
)  =  ( ( Q  x.  G )  -  ( Q  x.  N ) ) )
471oveq2d 6038 . . . . . . 7  |-  ( ph  ->  ( Q  x.  ( T ^ 3 ) )  =  ( Q  x.  ( G  -  N
) ) )
487sqvald 11449 . . . . . . . . . 10  |-  ( ph  ->  ( N ^ 2 )  =  ( N  x.  N ) )
4948oveq2d 6038 . . . . . . . . 9  |-  ( ph  ->  ( 2  x.  ( N ^ 2 ) )  =  ( 2  x.  ( N  x.  N
) ) )
5012, 7, 7mulassd 9046 . . . . . . . . 9  |-  ( ph  ->  ( ( 2  x.  N )  x.  N
)  =  ( 2  x.  ( N  x.  N ) ) )
5118oveq1d 6037 . . . . . . . . 9  |-  ( ph  ->  ( ( 2  x.  N )  x.  N
)  =  ( Q  x.  N ) )
5249, 50, 513eqtr2d 2427 . . . . . . . 8  |-  ( ph  ->  ( 2  x.  ( N ^ 2 ) )  =  ( Q  x.  N ) )
5352oveq2d 6038 . . . . . . 7  |-  ( ph  ->  ( ( Q  x.  G )  -  (
2  x.  ( N ^ 2 ) ) )  =  ( ( Q  x.  G )  -  ( Q  x.  N ) ) )
5446, 47, 533eqtr4d 2431 . . . . . 6  |-  ( ph  ->  ( Q  x.  ( T ^ 3 ) )  =  ( ( Q  x.  G )  -  ( 2  x.  ( N ^ 2 ) ) ) )
5554oveq1d 6037 . . . . 5  |-  ( ph  ->  ( ( Q  x.  ( T ^ 3 ) )  -  ( M ^ 3 ) )  =  ( ( ( Q  x.  G )  -  ( 2  x.  ( N ^ 2 ) ) )  -  ( M ^ 3 ) ) )
56 mulcl 9009 . . . . . . 7  |-  ( ( 2  e.  CC  /\  ( N ^ 2 )  e.  CC )  -> 
( 2  x.  ( N ^ 2 ) )  e.  CC )
5711, 25, 56sylancr 645 . . . . . 6  |-  ( ph  ->  ( 2  x.  ( N ^ 2 ) )  e.  CC )
5838, 57, 36subsub4d 9376 . . . . 5  |-  ( ph  ->  ( ( ( Q  x.  G )  -  ( 2  x.  ( N ^ 2 ) ) )  -  ( M ^ 3 ) )  =  ( ( Q  x.  G )  -  ( ( 2  x.  ( N ^ 2 ) )  +  ( M ^ 3 ) ) ) )
5955, 58eqtrd 2421 . . . 4  |-  ( ph  ->  ( ( Q  x.  ( T ^ 3 ) )  -  ( M ^ 3 ) )  =  ( ( Q  x.  G )  -  ( ( 2  x.  ( N ^ 2 ) )  +  ( M ^ 3 ) ) ) )
6045, 59oveq12d 6040 . . 3  |-  ( ph  ->  ( ( ( T ^ 3 ) ^
2 )  +  ( ( Q  x.  ( T ^ 3 ) )  -  ( M ^
3 ) ) )  =  ( ( ( ( 2  x.  ( N ^ 2 ) )  +  ( M ^
3 ) )  -  ( Q  x.  G
) )  +  ( ( Q  x.  G
)  -  ( ( 2  x.  ( N ^ 2 ) )  +  ( M ^
3 ) ) ) ) )
6157, 36addcld 9042 . . . 4  |-  ( ph  ->  ( ( 2  x.  ( N ^ 2 ) )  +  ( M ^ 3 ) )  e.  CC )
62 npncan2 9262 . . . 4  |-  ( ( ( ( 2  x.  ( N ^ 2 ) )  +  ( M ^ 3 ) )  e.  CC  /\  ( Q  x.  G
)  e.  CC )  ->  ( ( ( ( 2  x.  ( N ^ 2 ) )  +  ( M ^
3 ) )  -  ( Q  x.  G
) )  +  ( ( Q  x.  G
)  -  ( ( 2  x.  ( N ^ 2 ) )  +  ( M ^
3 ) ) ) )  =  0 )
6361, 38, 62syl2anc 643 . . 3  |-  ( ph  ->  ( ( ( ( 2  x.  ( N ^ 2 ) )  +  ( M ^
3 ) )  -  ( Q  x.  G
) )  +  ( ( Q  x.  G
)  -  ( ( 2  x.  ( N ^ 2 ) )  +  ( M ^
3 ) ) ) )  =  0 )
6460, 63eqtrd 2421 . 2  |-  ( ph  ->  ( ( ( T ^ 3 ) ^
2 )  +  ( ( Q  x.  ( T ^ 3 ) )  -  ( M ^
3 ) ) )  =  0 )
65 dcubic.x . . 3  |-  ( ph  ->  X  e.  CC )
66 dcubic.t . . 3  |-  ( ph  ->  T  e.  CC )
67 dcubic.0 . . 3  |-  ( ph  ->  T  =/=  0 )
68 dcubic1.x . . 3  |-  ( ph  ->  X  =  ( T  -  ( M  /  T ) ) )
6927, 5, 65, 66, 1, 3, 10, 26, 4, 67, 66, 67, 68dcubic1lem 20552 . 2  |-  ( ph  ->  ( ( ( X ^ 3 )  +  ( ( P  x.  X )  +  Q
) )  =  0  <-> 
( ( ( T ^ 3 ) ^
2 )  +  ( ( Q  x.  ( T ^ 3 ) )  -  ( M ^
3 ) ) )  =  0 ) )
7064, 69mpbird 224 1  |-  ( ph  ->  ( ( X ^
3 )  +  ( ( P  x.  X
)  +  Q ) )  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1649    e. wcel 1717    =/= wne 2552  (class class class)co 6022   CCcc 8923   0cc0 8925    + caddc 8928    x. cmul 8930    - cmin 9225    / cdiv 9611   2c2 9983   3c3 9984   NN0cn0 10155   ^cexp 11311
This theorem is referenced by:  dcubic  20555
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643  ax-cnex 8981  ax-resscn 8982  ax-1cn 8983  ax-icn 8984  ax-addcl 8985  ax-addrcl 8986  ax-mulcl 8987  ax-mulrcl 8988  ax-mulcom 8989  ax-addass 8990  ax-mulass 8991  ax-distr 8992  ax-i2m1 8993  ax-1ne0 8994  ax-1rid 8995  ax-rnegex 8996  ax-rrecex 8997  ax-cnre 8998  ax-pre-lttri 8999  ax-pre-lttrn 9000  ax-pre-ltadd 9001  ax-pre-mulgt0 9002  ax-pre-sup 9003
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-nel 2555  df-ral 2656  df-rex 2657  df-reu 2658  df-rmo 2659  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-pss 3281  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-tp 3767  df-op 3768  df-uni 3960  df-iun 4039  df-br 4156  df-opab 4210  df-mpt 4211  df-tr 4246  df-eprel 4437  df-id 4441  df-po 4446  df-so 4447  df-fr 4484  df-we 4486  df-ord 4527  df-on 4528  df-lim 4529  df-suc 4530  df-om 4788  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-1st 6290  df-2nd 6291  df-riota 6487  df-recs 6571  df-rdg 6606  df-er 6843  df-en 7048  df-dom 7049  df-sdom 7050  df-sup 7383  df-pnf 9057  df-mnf 9058  df-xr 9059  df-ltxr 9060  df-le 9061  df-sub 9227  df-neg 9228  df-div 9612  df-nn 9935  df-2 9992  df-3 9993  df-n0 10156  df-z 10217  df-uz 10423  df-rp 10547  df-fz 10978  df-seq 11253  df-exp 11312  df-cj 11833  df-re 11834  df-im 11835  df-sqr 11969  df-abs 11970  df-dvds 12782
  Copyright terms: Public domain W3C validator