MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ddif Unicode version

Theorem ddif 3422
Description: Double complement under universal class. Exercise 4.10(s) of [Mendelson] p. 231. (Contributed by NM, 8-Jan-2002.)
Assertion
Ref Expression
ddif  |-  ( _V 
\  ( _V  \  A ) )  =  A

Proof of Theorem ddif
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 vex 2902 . . . . 5  |-  x  e. 
_V
2 eldif 3273 . . . . 5  |-  ( x  e.  ( _V  \  A )  <->  ( x  e.  _V  /\  -.  x  e.  A ) )
31, 2mpbiran 885 . . . 4  |-  ( x  e.  ( _V  \  A )  <->  -.  x  e.  A )
43con2bii 323 . . 3  |-  ( x  e.  A  <->  -.  x  e.  ( _V  \  A
) )
51biantrur 493 . . 3  |-  ( -.  x  e.  ( _V 
\  A )  <->  ( x  e.  _V  /\  -.  x  e.  ( _V  \  A
) ) )
64, 5bitr2i 242 . 2  |-  ( ( x  e.  _V  /\  -.  x  e.  ( _V  \  A ) )  <-> 
x  e.  A )
76difeqri 3410 1  |-  ( _V 
\  ( _V  \  A ) )  =  A
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 359    = wceq 1649    e. wcel 1717   _Vcvv 2899    \ cdif 3260
This theorem is referenced by:  dfun3  3522  dfin3  3523  invdif  3525  ssindif0  3624  difdifdir  3658
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-v 2901  df-dif 3266
  Copyright terms: Public domain W3C validator