MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  deceq2 Unicode version

Theorem deceq2 10124
Description: Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.)
Assertion
Ref Expression
deceq2  |-  ( A  =  B  -> ; C A  = ; C B )

Proof of Theorem deceq2
StepHypRef Expression
1 oveq2 5828 . 2  |-  ( A  =  B  ->  (
( 10  x.  C
)  +  A )  =  ( ( 10  x.  C )  +  B ) )
2 df-dec 10121 . 2  |- ; C A  =  ( ( 10  x.  C
)  +  A )
3 df-dec 10121 . 2  |- ; C B  =  ( ( 10  x.  C
)  +  B )
41, 2, 33eqtr4g 2341 1  |-  ( A  =  B  -> ; C A  = ; C B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623  (class class class)co 5820    + caddc 8736    x. cmul 8738   10c10 9799  ;cdc 10120
This theorem is referenced by:  deceq2i  10126
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-rex 2550  df-rab 2553  df-v 2791  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-br 4025  df-opab 4079  df-xp 4694  df-cnv 4696  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fv 5229  df-ov 5823  df-dec 10121
  Copyright terms: Public domain W3C validator