Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  derangfmla Unicode version

Theorem derangfmla 23094
Description: The derangements formula, which expresses the number of derangements of a finite nonempty set in terms of the factorial. The expression  |_ `  (
x  +  1  / 
2 ) is a way of saying "rounded to the nearest integer". (Contributed by Mario Carneiro, 23-Jan-2015.)
Hypothesis
Ref Expression
derangfmla.d  |-  D  =  ( x  e.  Fin  |->  ( # `  { f  |  ( f : x -1-1-onto-> x  /\  A. y  e.  x  ( f `  y )  =/=  y
) } ) )
Assertion
Ref Expression
derangfmla  |-  ( ( A  e.  Fin  /\  A  =/=  (/) )  ->  ( D `  A )  =  ( |_ `  ( ( ( ! `
 ( # `  A
) )  /  _e )  +  ( 1  /  2 ) ) ) )
Distinct variable groups:    x, f,
y, A    x, D, y
Allowed substitution hint:    D( f)

Proof of Theorem derangfmla
StepHypRef Expression
1 derangfmla.d . . . 4  |-  D  =  ( x  e.  Fin  |->  ( # `  { f  |  ( f : x -1-1-onto-> x  /\  A. y  e.  x  ( f `  y )  =/=  y
) } ) )
2 oveq2 5800 . . . . . 6  |-  ( n  =  m  ->  (
1 ... n )  =  ( 1 ... m
) )
32fveq2d 5462 . . . . 5  |-  ( n  =  m  ->  ( D `  ( 1 ... n ) )  =  ( D `  (
1 ... m ) ) )
43cbvmptv 4085 . . . 4  |-  ( n  e.  NN0  |->  ( D `
 ( 1 ... n ) ) )  =  ( m  e. 
NN0  |->  ( D `  ( 1 ... m
) ) )
51, 4derangen2 23078 . . 3  |-  ( A  e.  Fin  ->  ( D `  A )  =  ( ( n  e.  NN0  |->  ( D `
 ( 1 ... n ) ) ) `
 ( # `  A
) ) )
65adantr 453 . 2  |-  ( ( A  e.  Fin  /\  A  =/=  (/) )  ->  ( D `  A )  =  ( ( n  e.  NN0  |->  ( D `
 ( 1 ... n ) ) ) `
 ( # `  A
) ) )
7 hashnncl 11321 . . . 4  |-  ( A  e.  Fin  ->  (
( # `  A )  e.  NN  <->  A  =/=  (/) ) )
87biimpar 473 . . 3  |-  ( ( A  e.  Fin  /\  A  =/=  (/) )  ->  ( # `
 A )  e.  NN )
91, 4subfacval3 23093 . . 3  |-  ( (
# `  A )  e.  NN  ->  ( (
n  e.  NN0  |->  ( D `
 ( 1 ... n ) ) ) `
 ( # `  A
) )  =  ( |_ `  ( ( ( ! `  ( # `
 A ) )  /  _e )  +  ( 1  /  2
) ) ) )
108, 9syl 17 . 2  |-  ( ( A  e.  Fin  /\  A  =/=  (/) )  ->  (
( n  e.  NN0  |->  ( D `  ( 1 ... n ) ) ) `  ( # `  A ) )  =  ( |_ `  (
( ( ! `  ( # `  A ) )  /  _e )  +  ( 1  / 
2 ) ) ) )
116, 10eqtrd 2290 1  |-  ( ( A  e.  Fin  /\  A  =/=  (/) )  ->  ( D `  A )  =  ( |_ `  ( ( ( ! `
 ( # `  A
) )  /  _e )  +  ( 1  /  2 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621   {cab 2244    =/= wne 2421   A.wral 2518   (/)c0 3430    e. cmpt 4051   -1-1-onto->wf1o 4672   ` cfv 4673  (class class class)co 5792   Fincfn 6831   1c1 8706    + caddc 8708    / cdiv 9391   NNcn 9714   2c2 9763   NN0cn0 9933   ...cfz 10749   |_cfl 10891   !cfa 11255   #chash 11304   _eceu 12307
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-inf2 7310  ax-cnex 8761  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782  ax-pre-sup 8783  ax-addf 8784  ax-mulf 8785
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-int 3837  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-se 4325  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-isom 4690  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-1st 6056  df-2nd 6057  df-iota 6225  df-riota 6272  df-recs 6356  df-rdg 6391  df-1o 6447  df-2o 6448  df-oadd 6451  df-er 6628  df-map 6742  df-pm 6743  df-en 6832  df-dom 6833  df-sdom 6834  df-fin 6835  df-sup 7162  df-oi 7193  df-card 7540  df-cda 7762  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-div 9392  df-n 9715  df-2 9772  df-3 9773  df-4 9774  df-n0 9934  df-z 9993  df-uz 10199  df-q 10285  df-rp 10323  df-ico 10629  df-fz 10750  df-fzo 10838  df-fl 10892  df-seq 11014  df-exp 11072  df-fac 11256  df-bc 11283  df-hash 11305  df-shft 11528  df-cj 11550  df-re 11551  df-im 11552  df-sqr 11686  df-abs 11687  df-limsup 11911  df-clim 11928  df-rlim 11929  df-sum 12125  df-ef 12312  df-e 12313
  Copyright terms: Public domain W3C validator