Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  deranglem Unicode version

Theorem deranglem 23699
Description: Lemma for derangements. (Contributed by Mario Carneiro, 19-Jan-2015.)
Assertion
Ref Expression
deranglem  |-  ( A  e.  Fin  ->  { f  |  ( f : A -1-1-onto-> A  /\  ph ) }  e.  Fin )
Distinct variable group:    A, f
Allowed substitution hint:    ph( f)

Proof of Theorem deranglem
StepHypRef Expression
1 mapfi 7154 . . 3  |-  ( ( A  e.  Fin  /\  A  e.  Fin )  ->  ( A  ^m  A
)  e.  Fin )
2 f1of 5474 . . . . . 6  |-  ( f : A -1-1-onto-> A  ->  f : A
--> A )
32adantr 451 . . . . 5  |-  ( ( f : A -1-1-onto-> A  /\  ph )  ->  f : A
--> A )
4 elmapg 6787 . . . . 5  |-  ( ( A  e.  Fin  /\  A  e.  Fin )  ->  ( f  e.  ( A  ^m  A )  <-> 
f : A --> A ) )
53, 4syl5ibr 212 . . . 4  |-  ( ( A  e.  Fin  /\  A  e.  Fin )  ->  ( ( f : A -1-1-onto-> A  /\  ph )  ->  f  e.  ( A  ^m  A ) ) )
65abssdv 3249 . . 3  |-  ( ( A  e.  Fin  /\  A  e.  Fin )  ->  { f  |  ( f : A -1-1-onto-> A  /\  ph ) }  C_  ( A  ^m  A ) )
7 ssfi 7085 . . 3  |-  ( ( ( A  ^m  A
)  e.  Fin  /\  { f  |  ( f : A -1-1-onto-> A  /\  ph ) }  C_  ( A  ^m  A ) )  ->  { f  |  ( f : A -1-1-onto-> A  /\  ph ) }  e.  Fin )
81, 6, 7syl2anc 642 . 2  |-  ( ( A  e.  Fin  /\  A  e.  Fin )  ->  { f  |  ( f : A -1-1-onto-> A  /\  ph ) }  e.  Fin )
98anidms 626 1  |-  ( A  e.  Fin  ->  { f  |  ( f : A -1-1-onto-> A  /\  ph ) }  e.  Fin )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    e. wcel 1686   {cab 2271    C_ wss 3154   -->wf 5253   -1-1-onto->wf1o 5256  (class class class)co 5860    ^m cmap 6774   Fincfn 6865
This theorem is referenced by:  derangf  23701  derangenlem  23704  subfaclefac  23709  subfacp1lem3  23715  subfacp1lem5  23717  subfacp1lem6  23718
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-reu 2552  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-1st 6124  df-2nd 6125  df-recs 6390  df-rdg 6425  df-1o 6481  df-2o 6482  df-oadd 6485  df-er 6662  df-map 6776  df-pm 6777  df-en 6866  df-dom 6867  df-sdom 6868  df-fin 6869
  Copyright terms: Public domain W3C validator