Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  deranglem Unicode version

Theorem deranglem 23034
Description: Lemma for derangements. (Contributed by Mario Carneiro, 19-Jan-2015.)
Assertion
Ref Expression
deranglem  |-  ( A  e.  Fin  ->  { f  |  ( f : A -1-1-onto-> A  /\  ph ) }  e.  Fin )
Distinct variable group:    A, f
Allowed substitution hint:    ph( f)

Proof of Theorem deranglem
StepHypRef Expression
1 mapfi 7085 . . 3  |-  ( ( A  e.  Fin  /\  A  e.  Fin )  ->  ( A  ^m  A
)  e.  Fin )
2 f1of 5375 . . . . . 6  |-  ( f : A -1-1-onto-> A  ->  f : A
--> A )
32adantr 453 . . . . 5  |-  ( ( f : A -1-1-onto-> A  /\  ph )  ->  f : A
--> A )
4 elmapg 6718 . . . . 5  |-  ( ( A  e.  Fin  /\  A  e.  Fin )  ->  ( f  e.  ( A  ^m  A )  <-> 
f : A --> A ) )
53, 4syl5ibr 214 . . . 4  |-  ( ( A  e.  Fin  /\  A  e.  Fin )  ->  ( ( f : A -1-1-onto-> A  /\  ph )  ->  f  e.  ( A  ^m  A ) ) )
65abssdv 3189 . . 3  |-  ( ( A  e.  Fin  /\  A  e.  Fin )  ->  { f  |  ( f : A -1-1-onto-> A  /\  ph ) }  C_  ( A  ^m  A ) )
7 ssfi 7016 . . 3  |-  ( ( ( A  ^m  A
)  e.  Fin  /\  { f  |  ( f : A -1-1-onto-> A  /\  ph ) }  C_  ( A  ^m  A ) )  ->  { f  |  ( f : A -1-1-onto-> A  /\  ph ) }  e.  Fin )
81, 6, 7syl2anc 645 . 2  |-  ( ( A  e.  Fin  /\  A  e.  Fin )  ->  { f  |  ( f : A -1-1-onto-> A  /\  ph ) }  e.  Fin )
98anidms 629 1  |-  ( A  e.  Fin  ->  { f  |  ( f : A -1-1-onto-> A  /\  ph ) }  e.  Fin )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    e. wcel 1621   {cab 2242    C_ wss 3094   -->wf 4634   -1-1-onto->wf1o 4637  (class class class)co 5757    ^m cmap 6705   Fincfn 6796
This theorem is referenced by:  derangf  23036  derangenlem  23039  subfaclefac  23044  subfacp1lem3  23050  subfacp1lem5  23052  subfacp1lem6  23053
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-int 3804  df-iun 3848  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-1st 6021  df-2nd 6022  df-recs 6321  df-rdg 6356  df-1o 6412  df-2o 6413  df-oadd 6416  df-er 6593  df-map 6707  df-pm 6708  df-en 6797  df-dom 6798  df-sdom 6799  df-fin 6800
  Copyright terms: Public domain W3C validator