HomeHome Metamath Proof Explorer < Previous   Next >
Related theorems
Unicode version

Definition df-0 8171
Description: Define the complex number 0. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
df-0  |-  0  =  <. 0R ,  0R >.

Detailed syntax breakdown of Definition df-0
StepHypRef Expression
1 cc0 8164 . 2  class  0
2 c0r 7917 . . 3  class  0R
32, 2cop 3259 . 2  class  <. 0R ,  0R >.
41, 3wceq 1520 1  wff  0  =  <. 0R ,  0R >.
Colors of variables: wff set class
This definition is referenced by:  axi2m1  8208  ax1ne0  8209  axrnegex  8211  axrrecex  8212  axpre-mulgt0  8217
Copyright terms: Public domain