HomeHome Metamath Proof Explorer < Previous   Next >
Related theorems
Unicode version

Definition df-0 8165
Description: Define the complex number 0. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
df-0  |-  0  =  <. 0R ,  0R >.

Detailed syntax breakdown of Definition df-0
StepHypRef Expression
1 cc0 8158 . 2  class  0
2 c0r 7911 . . 3  class  0R
32, 2cop 3258 . 2  class  <. 0R ,  0R >.
41, 3wceq 1520 1  wff  0  =  <. 0R ,  0R >.
Colors of variables: wff set class
This definition is referenced by:  axi2m1  8202  ax1ne0  8203  axrnegex  8205  axrrecex  8206  axpre-mulgt0  8211
Copyright terms: Public domain