MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-c Unicode version

Definition df-c 8952
Description: Define the set of complex numbers. The 23 axioms for complex numbers start at axresscn 8979. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
df-c  |-  CC  =  ( R.  X.  R. )

Detailed syntax breakdown of Definition df-c
StepHypRef Expression
1 cc 8944 . 2  class  CC
2 cnr 8698 . . 3  class  R.
32, 2cxp 4835 . 2  class  ( R. 
X.  R. )
41, 3wceq 1649 1  wff  CC  =  ( R.  X.  R. )
Colors of variables: wff set class
This definition is referenced by:  opelcn  8960  0ncn  8964  addcnsr  8966  mulcnsr  8967  dfcnqs  8973  axaddf  8976  axmulf  8977  axcnex  8978  axresscn  8979  axcnre  8995  wuncn  9001
  Copyright terms: Public domain W3C validator