MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-c Structured version   Unicode version

Definition df-c 8998
Description: Define the set of complex numbers. The 23 axioms for complex numbers start at axresscn 9025. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
df-c  |-  CC  =  ( R.  X.  R. )

Detailed syntax breakdown of Definition df-c
StepHypRef Expression
1 cc 8990 . 2  class  CC
2 cnr 8744 . . 3  class  R.
32, 2cxp 4878 . 2  class  ( R. 
X.  R. )
41, 3wceq 1653 1  wff  CC  =  ( R.  X.  R. )
Colors of variables: wff set class
This definition is referenced by:  opelcn  9006  0ncn  9010  addcnsr  9012  mulcnsr  9013  dfcnqs  9019  axaddf  9022  axmulf  9023  axcnex  9024  axresscn  9025  axcnre  9041  wuncn  9047
  Copyright terms: Public domain W3C validator