MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-eprel Unicode version

Definition df-eprel 4242
Description: Define the epsilon relation. Similar to Definition 6.22 of [TakeutiZaring] p. 30. The epsilon relation and set membership are the same, that is,  ( A  _E  B  <->  A  e.  B ) when  B is a set by epelg 4243. Thus,  5  _E  { 1 ,  5 } (ex-eprel 20728). (Contributed by NM, 13-Aug-1995.)
Assertion
Ref Expression
df-eprel  |-  _E  =  { <. x ,  y
>.  |  x  e.  y }
Distinct variable group:    x, y

Detailed syntax breakdown of Definition df-eprel
StepHypRef Expression
1 cep 4240 . 2  class  _E
2 vx . . . 4  set  x
3 vy . . . 4  set  y
42, 3wel 1622 . . 3  wff  x  e.  y
54, 2, 3copab 4016 . 2  class  { <. x ,  y >.  |  x  e.  y }
61, 5wceq 1619 1  wff  _E  =  { <. x ,  y
>.  |  x  e.  y }
Colors of variables: wff set class
This definition is referenced by:  epelg  4243  rele  4767
  Copyright terms: Public domain W3C validator