MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-fin3 Unicode version

Definition df-fin3 7909
Description: A set is III-finite (weakly Dedekind finite) iff its power set is Dedekind finite. Definition III of [Levy58] p. 2. (Contributed by Stefan O'Rear, 12-Nov-2014.)
Assertion
Ref Expression
df-fin3  |- FinIII  =  { x  |  ~P x  e. FinIV }

Detailed syntax breakdown of Definition df-fin3
StepHypRef Expression
1 cfin3 7902 . 2  class FinIII
2 vx . . . . . 6  set  x
32cv 1623 . . . . 5  class  x
43cpw 3626 . . . 4  class  ~P x
5 cfin4 7901 . . . 4  class FinIV
64, 5wcel 1685 . . 3  wff  ~P x  e. FinIV
76, 2cab 2270 . 2  class  { x  |  ~P x  e. FinIV }
81, 7wceq 1624 1  wff FinIII  =  { x  |  ~P x  e. FinIV }
Colors of variables: wff set class
This definition is referenced by:  isfin3  7917
  Copyright terms: Public domain W3C validator