HomeHome Metamath Proof Explorer < Previous   Next >
Related theorems
Unicode version

Definition df-fun 4030
Description: Define a function. Definition 10.1 of [Quine] p. 65. For alternate definitions, see dffun2 4460, dffun3 4461, dffun4 4462, dffun5 4463, dffun6 4465, dffun7 4475, dffun8 4476, and dffun9 4477.
Assertion
Ref Expression
df-fun |- (Fun A <-> (Rel A /\ (A o. `'A) C_ _I ))

Detailed syntax breakdown of Definition df-fun
StepHypRef Expression
1 cA . . 3 class A
21wfun 4014 . 2 wff Fun A
31wrel 4013 . . 3 wff Rel A
41ccnv 4007 . . . . 5 class `'A
51, 4ccom 4012 . . . 4 class (A o. `'A)
6 cid 3626 . . . 4 class _I
75, 6wss 2663 . . 3 wff (A o. `'A) C_ _I
83, 7wa 382 . 2 wff (Rel A /\ (A o. `'A) C_ _I )
92, 8wb 189 1 wff (Fun A <-> (Rel A /\ (A o. `'A) C_ _I ))
Colors of variables: wff set class
This definition is referenced by:  dffun2 4460  funrel 4467  funss 4468  hbfun 4472  funi 4479  f1ococnv2 4666  dffv2 4743  flimfnei2 15862  cnvcan 16797
Copyright terms: Public domain