HomeHome Metamath Proof Explorer < Previous   Next >
Related theorems
Unicode version

Definition df-fun 4159
Description: Define a function. Definition 10.1 of [Quine] p. 65. For alternate definitions, see dffun2 4584, dffun3 4585, dffun4 4586, dffun5 4587, dffun6 4589, dffun7 4599, dffun8 4600, and dffun9 4601.
Assertion
Ref Expression
df-fun |- (Fun A <-> (Rel A /\ (A o. `'A) C_ _I ))

Detailed syntax breakdown of Definition df-fun
StepHypRef Expression
1 cA . . 3 class A
21wfun 4143 . 2 wff Fun A
31wrel 4142 . . 3 wff Rel A
41ccnv 4136 . . . . 5 class `'A
51, 4ccom 4141 . . . 4 class (A o. `'A)
6 cid 3761 . . . 4 class _I
75, 6wss 2801 . . 3 wff (A o. `'A) C_ _I
83, 7wa 418 . 2 wff (Rel A /\ (A o. `'A) C_ _I )
92, 8wb 209 1 wff (Fun A <-> (Rel A /\ (A o. `'A) C_ _I ))
Colors of variables: wff set class
This definition is referenced by:  dffun2 4584  funrel 4591  hbfun 4596  funi 4603  f1ococnv2 4797  dffv2 4873  flimfnei2 15462  cnvcan 16388
Copyright terms: Public domain