MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-fun Unicode version

Definition df-fun 5398
Description: Define predicate that determines if some class  A is a function. Definition 10.1 of [Quine] p. 65. For example, the expression  Fun  cos is true once we define cosine (df-cos 12602). This is not the same as defining a specific function's mapping, which is typically done using the format of cmpt 4209 with the maps-to notation (see df-mpt 4211 and df-mpt2 6027). Contrast this predicate with the predicates to determine if some class is a function with a given domain (df-fn 5399), a function with a given domain and codomain (df-f 5400), a one-to-one function (df-f1 5401), an onto function (df-fo 5402), or a one-to-one onto function (df-f1o 5403). For alternate definitions, see dffun2 5406, dffun3 5407, dffun4 5408, dffun5 5409, dffun6 5411, dffun7 5421, dffun8 5422, and dffun9 5423. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
df-fun  |-  ( Fun 
A  <->  ( Rel  A  /\  ( A  o.  `' A )  C_  _I  ) )

Detailed syntax breakdown of Definition df-fun
StepHypRef Expression
1 cA . . 3  class  A
21wfun 5390 . 2  wff  Fun  A
31wrel 4825 . . 3  wff  Rel  A
41ccnv 4819 . . . . 5  class  `' A
51, 4ccom 4824 . . . 4  class  ( A  o.  `' A )
6 cid 4436 . . . 4  class  _I
75, 6wss 3265 . . 3  wff  ( A  o.  `' A ) 
C_  _I
83, 7wa 359 . 2  wff  ( Rel 
A  /\  ( A  o.  `' A )  C_  _I  )
92, 8wb 177 1  wff  ( Fun 
A  <->  ( Rel  A  /\  ( A  o.  `' A )  C_  _I  ) )
Colors of variables: wff set class
This definition is referenced by:  dffun2  5406  funrel  5413  funss  5414  nffun  5418  funi  5425  funcocnv2  5642  dffv2  5737
  Copyright terms: Public domain W3C validator