MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-har Unicode version

Definition df-har 7269
Description: Define the Hartogs function , which maps all sets to the smallest ordinal that cannot be injected into the given set. In the important special case where  x is an ordinal, this is the cardinal successor operation.

Traditionally, the Hartogs number of a set is written  aleph ( X ) and the cardinal successor 
X  +; we use functional notation for this, and cannot use the aleph symbol because it is taken for the enumerating function of the infinite initial ordinals df-aleph 7570.

Some authors define the Hartogs number of a set to be the least *infinite* ordinal which does not inject into it, thus causing the range to consist only of alephs. We use the simpler definition where the value can be any successor cardinal. (Contributed by Stefan O'Rear, 11-Feb-2015.)

Assertion
Ref Expression
df-har  |- har  =  ( x  e.  _V  |->  { y  e.  On  | 
y  ~<_  x } )
Distinct variable group:    x, y

Detailed syntax breakdown of Definition df-har
StepHypRef Expression
1 char 7267 . 2  class har
2 vx . . 3  set  x
3 cvv 2791 . . 3  class  _V
4 vy . . . . . 6  set  y
54cv 1624 . . . . 5  class  y
62cv 1624 . . . . 5  class  x
7 cdom 6858 . . . . 5  class  ~<_
85, 6, 7wbr 4026 . . . 4  wff  y  ~<_  x
9 con0 4393 . . . 4  class  On
108, 4, 9crab 2550 . . 3  class  { y  e.  On  |  y  ~<_  x }
112, 3, 10cmpt 4080 . 2  class  ( x  e.  _V  |->  { y  e.  On  |  y  ~<_  x } )
121, 11wceq 1625 1  wff har  =  ( x  e.  _V  |->  { y  e.  On  | 
y  ~<_  x } )
Colors of variables: wff set class
This definition is referenced by:  harf  7271  harval  7273
  Copyright terms: Public domain W3C validator