MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-har Unicode version

Definition df-har 7272
Description: Define the Hartogs function , which maps all sets to the smallest ordinal that cannot be injected into the given set. In the important special case where  x is an ordinal, this is the cardinal successor operation.

Traditionally, the Hartogs number of a set is written  aleph ( X ) and the cardinal successor 
X  +; we use functional notation for this, and cannot use the aleph symbol because it is taken for the enumerating function of the infinite initial ordinals df-aleph 7573.

Some authors define the Hartogs number of a set to be the least *infinite* ordinal which does not inject into it, thus causing the range to consist only of alephs. We use the simpler definition where the value can be any successor cardinal. (Contributed by Stefan O'Rear, 11-Feb-2015.)

Assertion
Ref Expression
df-har  |- har  =  ( x  e.  _V  |->  { y  e.  On  | 
y  ~<_  x } )
Distinct variable group:    x, y

Detailed syntax breakdown of Definition df-har
StepHypRef Expression
1 char 7270 . 2  class har
2 vx . . 3  set  x
3 cvv 2788 . . 3  class  _V
4 vy . . . . . 6  set  y
54cv 1622 . . . . 5  class  y
62cv 1622 . . . . 5  class  x
7 cdom 6861 . . . . 5  class  ~<_
85, 6, 7wbr 4023 . . . 4  wff  y  ~<_  x
9 con0 4392 . . . 4  class  On
108, 4, 9crab 2547 . . 3  class  { y  e.  On  |  y  ~<_  x }
112, 3, 10cmpt 4077 . 2  class  ( x  e.  _V  |->  { y  e.  On  |  y  ~<_  x } )
121, 11wceq 1623 1  wff har  =  ( x  e.  _V  |->  { y  e.  On  | 
y  ~<_  x } )
Colors of variables: wff set class
This definition is referenced by:  harf  7274  harval  7276
  Copyright terms: Public domain W3C validator