MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-hmeo Structured version   Unicode version

Definition df-hmeo 17789
Description: Function returning all the homeomorphisms from topology  j to topology  k. (Contributed by FL, 14-Feb-2007.)
Assertion
Ref Expression
df-hmeo  |-  Homeo  =  ( j  e.  Top , 
k  e.  Top  |->  { f  e.  ( j  Cn  k )  |  `' f  e.  (
k  Cn  j ) } )
Distinct variable group:    f, j, k

Detailed syntax breakdown of Definition df-hmeo
StepHypRef Expression
1 chmeo 17787 . 2  class  Homeo
2 vj . . 3  set  j
3 vk . . 3  set  k
4 ctop 16960 . . 3  class  Top
5 vf . . . . . . 7  set  f
65cv 1652 . . . . . 6  class  f
76ccnv 4879 . . . . 5  class  `' f
83cv 1652 . . . . . 6  class  k
92cv 1652 . . . . . 6  class  j
10 ccn 17290 . . . . . 6  class  Cn
118, 9, 10co 6083 . . . . 5  class  ( k  Cn  j )
127, 11wcel 1726 . . . 4  wff  `' f  e.  ( k  Cn  j )
139, 8, 10co 6083 . . . 4  class  ( j  Cn  k )
1412, 5, 13crab 2711 . . 3  class  { f  e.  ( j  Cn  k )  |  `' f  e.  ( k  Cn  j ) }
152, 3, 4, 4, 14cmpt2 6085 . 2  class  ( j  e.  Top ,  k  e.  Top  |->  { f  e.  ( j  Cn  k )  |  `' f  e.  ( k  Cn  j ) } )
161, 15wceq 1653 1  wff  Homeo  =  ( j  e.  Top , 
k  e.  Top  |->  { f  e.  ( j  Cn  k )  |  `' f  e.  (
k  Cn  j ) } )
Colors of variables: wff set class
This definition is referenced by:  hmeofn  17791  hmeofval  17792
  Copyright terms: Public domain W3C validator