Table of ContentsTable of Contents Mathbox for Jeff Madsen < Previous   Next >
Related theorems
Unicode version

Definition df-ii 16752
Description: Define the unit interval with the Euclidean topology.
Assertion
Ref Expression
df-ii |- II = (MetOpen` ((abs o. - ) |` ((0[,]1) X. (0[,]1))))

Detailed syntax breakdown of Definition df-ii
StepHypRef Expression
1 cii 16751 . 2 class II
2 cabs 8910 . . . . 5 class abs
3 cmin 7311 . . . . 5 class -
42, 3ccom 4124 . . . 4 class (abs o. - )
5 cc0 7089 . . . . . 6 class 0
6 c1 7090 . . . . . 6 class 1
7 cicc 8386 . . . . . 6 class [,]
85, 6, 7co 5050 . . . . 5 class (0[,]1)
98, 8cxp 4118 . . . 4 class ((0[,]1) X. (0[,]1))
104, 9cres 4122 . . 3 class ((abs o. - ) |` ((0[,]1) X. (0[,]1)))
11 copn 10683 . . 3 class MetOpen
1210, 11cfv 4132 . 2 class (MetOpen` ((abs o. - ) |` ((0[,]1) X. (0[,]1))))
131, 12wceq 1573 1 wff II = (MetOpen` ((abs o. - ) |` ((0[,]1) X. (0[,]1))))
Colors of variables: wff set class
This definition is referenced by:  iitop 16753  iiuni 16754  dfii2 16755  dfii3 16756  iicmp 16885  phtpycom 16907  phtpycolem3 16910  phtpycolem4 16911  pcocn 16933  pcohtpylem3 16939  pcopt 16941  pcoass 16942  pcorev 16944  pi1gp 16952
Copyright terms: Public domain