HomeHome Metamath Proof Explorer < Previous   Next >
Related theorems
Unicode version

Definition df-ii 11269
Description: Define the unit interval with the Euclidean topology.
Assertion
Ref Expression
df-ii |- II = (MetOpen` ((abs o. - ) |` ((0[,]1) X. (0[,]1))))

Detailed syntax breakdown of Definition df-ii
StepHypRef Expression
1 cii 11268 . 2 class II
2 cabs 8895 . . . . 5 class abs
3 cmin 7182 . . . . 5 class -
42, 3ccom 4004 . . . 4 class (abs o. - )
5 cc0 6960 . . . . . 6 class 0
6 c1 6961 . . . . . 6 class 1
7 cicc 8228 . . . . . 6 class [,]
85, 6, 7co 4924 . . . . 5 class (0[,]1)
98, 8cxp 3998 . . . 4 class ((0[,]1) X. (0[,]1))
104, 9cres 4002 . . 3 class ((abs o. - ) |` ((0[,]1) X. (0[,]1)))
11 copn 11096 . . 3 class MetOpen
1210, 11cfv 4012 . 2 class (MetOpen` ((abs o. - ) |` ((0[,]1) X. (0[,]1))))
131, 12wceq 1457 1 wff II = (MetOpen` ((abs o. - ) |` ((0[,]1) X. (0[,]1))))
Colors of variables: wff set class
This definition is referenced by:  iitop 11270  iiuni 11271  dfii2 11272  dfii3 11273
Copyright terms: Public domain