HomeHome Metamath Proof Explorer < Previous   Next >
Related theorems
Unicode version

Definition df-ii 16102
Description: Define the unit interval with the Euclidean topology. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
df-ii  |-  II  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) ) )

Detailed syntax breakdown of Definition df-ii
StepHypRef Expression
1 cii 16100 . 2  class  II
2 cabs 10432 . . . . 5  class  abs
3 cmin 8373 . . . . 5  class  -
42, 3ccom 4279 . . . 4  class  ( abs  o.  -  )
5 cc0 8137 . . . . . 6  class  0
6 c1 8138 . . . . . 6  class  1
7 cicc 9661 . . . . . 6  class  [,]
85, 6, 7co 5354 . . . . 5  class  ( 0 [,] 1 )
98, 8cxp 4273 . . . 4  class  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) )
104, 9cres 4277 . . 3  class  ( ( abs 
o.  -  )  |`  (
( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )
11 cmopn 14047 . . 3  class  MetOpen
1210, 11cfv 4287 . 2  class  ( MetOpen `  (
( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) ) )
131, 12wceq 1536 1  wff  II  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) ) )
Colors of variables: wff set class
This definition is referenced by:  iitopon  16104  dfii2  16107  dfii3  16108  lebnumii  16182
Copyright terms: Public domain