MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-le Unicode version

Definition df-le 8869
Description: Define 'less than or equal to' on the extended real subset of complex numbers. Theorem leloe 8904 relates it to 'less than' for reals. (Contributed by NM, 13-Oct-2005.)
Assertion
Ref Expression
df-le  |-  <_  =  ( ( RR*  X.  RR* )  \  `'  <  )

Detailed syntax breakdown of Definition df-le
StepHypRef Expression
1 cle 8864 . 2  class  <_
2 cxr 8862 . . . 4  class  RR*
32, 2cxp 4687 . . 3  class  ( RR*  X. 
RR* )
4 clt 8863 . . . 4  class  <
54ccnv 4688 . . 3  class  `'  <
63, 5cdif 3151 . 2  class  ( (
RR*  X.  RR* )  \  `'  <  )
71, 6wceq 1624 1  wff  <_  =  ( ( RR*  X.  RR* )  \  `'  <  )
Colors of variables: wff set class
This definition is referenced by:  lerelxr  8884  xrlenlt  8886  leiso  11392
  Copyright terms: Public domain W3C validator