MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-lidl Structured version   Unicode version

Definition df-lidl 16251
Description: Define the class of left ideals of a given ring. An ideal is a submodule of the ring viewed as a module over itself. (Contributed by Stefan O'Rear, 31-Mar-2015.)
Assertion
Ref Expression
df-lidl  |- LIdeal  =  (
LSubSp  o. ringLMod )

Detailed syntax breakdown of Definition df-lidl
StepHypRef Expression
1 clidl 16247 . 2  class LIdeal
2 clss 16013 . . 3  class  LSubSp
3 crglmod 16246 . . 3  class ringLMod
42, 3ccom 4885 . 2  class  ( LSubSp  o. ringLMod )
51, 4wceq 1653 1  wff LIdeal  =  (
LSubSp  o. ringLMod )
Colors of variables: wff set class
This definition is referenced by:  lidlval  16270
  Copyright terms: Public domain W3C validator