MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-log Unicode version

Definition df-log 20015
Description: Define the natural logarithm function on complex numbers. See http://en.wikipedia.org/wiki/Natural_logarithm ("The natural logarithm function can also be defined as the inverse function of the exponential function"). (Contributed by Paul Chapman, 21-Apr-2008.)
Assertion
Ref Expression
df-log  |-  log  =  `' ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) )

Detailed syntax breakdown of Definition df-log
StepHypRef Expression
1 clog 20013 . 2  class  log
2 ce 12434 . . . 4  class  exp
3 cim 11673 . . . . . 6  class  Im
43ccnv 4767 . . . . 5  class  `' Im
5 cpi 12439 . . . . . . 7  class  pi
65cneg 9125 . . . . . 6  class  -u pi
7 cioc 10746 . . . . . 6  class  (,]
86, 5, 7co 5942 . . . . 5  class  ( -u pi (,] pi )
94, 8cima 4771 . . . 4  class  ( `' Im " ( -u pi (,] pi ) )
102, 9cres 4770 . . 3  class  ( exp  |`  ( `' Im "
( -u pi (,] pi ) ) )
1110ccnv 4767 . 2  class  `' ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) )
121, 11wceq 1642 1  wff  log  =  `' ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) )
Colors of variables: wff set class
This definition is referenced by:  logrn  20017  dflog2  20019  dvlog  20103  efopnlem2  20109
  Copyright terms: Public domain W3C validator