MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-nfc Unicode version

Definition df-nfc 2533
Description: Define the not-free predicate for classes. This is read " x is not free in  A". Not-free means that the value of  x cannot affect the value of  A, e.g., any occurrence of  x in  A is effectively bound by a "for all" or something that expands to one (such as "there exists"). It is defined in terms of the not-free predicate df-nf 1551 for wffs; see that definition for more information. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
df-nfc  |-  ( F/_ x A  <->  A. y F/ x  y  e.  A )
Distinct variable groups:    x, y    y, A
Allowed substitution hint:    A( x)

Detailed syntax breakdown of Definition df-nfc
StepHypRef Expression
1 vx . . 3  set  x
2 cA . . 3  class  A
31, 2wnfc 2531 . 2  wff  F/_ x A
4 vy . . . . . 6  set  y
54cv 1648 . . . . 5  class  y
65, 2wcel 1721 . . . 4  wff  y  e.  A
76, 1wnf 1550 . . 3  wff  F/ x  y  e.  A
87, 4wal 1546 . 2  wff  A. y F/ x  y  e.  A
93, 8wb 177 1  wff  ( F/_ x A  <->  A. y F/ x  y  e.  A )
Colors of variables: wff set class
This definition is referenced by:  nfci  2534  nfcr  2536  nfcd  2539  nfceqi  2540  nfceqdf  2543  nfnfc1  2547  nfnfc  2550  drnfc1  2560  drnfc2  2561  dfnfc2  3997  nfnid  4357
  Copyright terms: Public domain W3C validator