MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-np Unicode version

Definition df-np 8601
Description: Define the set of positive reals. A "Dedekind cut" is a partition of the positive rational numbers into two classes such that all the numbers of one class are less than all the numbers of the other. A positive real is defined as the lower class of a Dedekind cut. Definition 9-3.1 of [Gleason] p. 121. (Note: This is a "temporary" definition used in the construction of complex numbers df-c 8739, and is intended to be used only by the construction.) (Contributed by NM, 31-Oct-1995.) (New usage is discouraged.)
Assertion
Ref Expression
df-np  |-  P.  =  { x  |  (
( (/)  C.  x  /\  x  C.  Q. )  /\  A. y  e.  x  ( A. z ( z 
<Q  y  ->  z  e.  x )  /\  E. z  e.  x  y  <Q  z ) ) }
Distinct variable group:    x, y, z

Detailed syntax breakdown of Definition df-np
StepHypRef Expression
1 cnp 8477 . 2  class  P.
2 c0 3457 . . . . . 6  class  (/)
3 vx . . . . . . 7  set  x
43cv 1623 . . . . . 6  class  x
52, 4wpss 3155 . . . . 5  wff  (/)  C.  x
6 cnq 8470 . . . . . 6  class  Q.
74, 6wpss 3155 . . . . 5  wff  x  C.  Q.
85, 7wa 360 . . . 4  wff  ( (/)  C.  x  /\  x  C.  Q. )
9 vz . . . . . . . . . 10  set  z
109cv 1623 . . . . . . . . 9  class  z
11 vy . . . . . . . . . 10  set  y
1211cv 1623 . . . . . . . . 9  class  y
13 cltq 8476 . . . . . . . . 9  class  <Q
1410, 12, 13wbr 4025 . . . . . . . 8  wff  z  <Q 
y
159, 3wel 1686 . . . . . . . 8  wff  z  e.  x
1614, 15wi 6 . . . . . . 7  wff  ( z 
<Q  y  ->  z  e.  x )
1716, 9wal 1528 . . . . . 6  wff  A. z
( z  <Q  y  ->  z  e.  x )
1812, 10, 13wbr 4025 . . . . . . 7  wff  y  <Q 
z
1918, 9, 4wrex 2546 . . . . . 6  wff  E. z  e.  x  y  <Q  z
2017, 19wa 360 . . . . 5  wff  ( A. z ( z  <Q 
y  ->  z  e.  x )  /\  E. z  e.  x  y  <Q  z )
2120, 11, 4wral 2545 . . . 4  wff  A. y  e.  x  ( A. z ( z  <Q 
y  ->  z  e.  x )  /\  E. z  e.  x  y  <Q  z )
228, 21wa 360 . . 3  wff  ( (
(/)  C.  x  /\  x  C.  Q. )  /\  A. y  e.  x  ( A. z ( z  <Q 
y  ->  z  e.  x )  /\  E. z  e.  x  y  <Q  z ) )
2322, 3cab 2271 . 2  class  { x  |  ( ( (/)  C.  x  /\  x  C.  Q. )  /\  A. y  e.  x  ( A. z ( z  <Q 
y  ->  z  e.  x )  /\  E. z  e.  x  y  <Q  z ) ) }
241, 23wceq 1624 1  wff  P.  =  { x  |  (
( (/)  C.  x  /\  x  C.  Q. )  /\  A. y  e.  x  ( A. z ( z 
<Q  y  ->  z  e.  x )  /\  E. z  e.  x  y  <Q  z ) ) }
Colors of variables: wff set class
This definition is referenced by:  npex  8606  elnp  8607  elnpi  8608
  Copyright terms: Public domain W3C validator