**Description: **Kuratowski's ordered pair
definition. Definition 9.1 of [Quine] p. 58.
For proper classes it is not meaningful but is well-defined and we allow
it for convenience (see opprc1 3215, opprc1b 3573, opprc2 3216, and opprc3 3574).
For the justifying theorem (for sets) see opth 3561.
There are other ways
to define ordered pairs; the basic requirement is that two ordered pairs
are equal iff their respective members are equal. In 1914 Norbert Wiener
gave the first successful definition
_2
, justified by opthwiener 3585, which
was simplified by Kazimierz Kuratowski in 1921 to our present definition.
An even simpler definition _3 is
justified by opthreg 6195, but it requires the Axiom of Regularity for
its
justification and is not commonly used. A definition that also works for
proper classes is _4
, justified by
opthprc 4068. If we restrict our sets to nonnegative
integers, an ordered
pair definition that involves only elementary arithmetic is provided by
nn0opthi 8935. Finally, an ordered pair of real numbers
can be represented
by a complex number as shown by crui 7867. |