MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-p0 Unicode version

Definition df-p0 14147
Description: Define poset zero. (Contributed by NM, 12-Oct-2011.)
Assertion
Ref Expression
df-p0  |-  0.  =  ( p  e.  _V  |->  ( ( glb `  p
) `  ( Base `  p ) ) )

Detailed syntax breakdown of Definition df-p0
StepHypRef Expression
1 cp0 14145 . 2  class  0.
2 vp . . 3  set  p
3 cvv 2790 . . 3  class  _V
42cv 1624 . . . . 5  class  p
5 cbs 13150 . . . . 5  class  Base
64, 5cfv 5257 . . . 4  class  ( Base `  p )
7 cglb 14079 . . . . 5  class  glb
84, 7cfv 5257 . . . 4  class  ( glb `  p )
96, 8cfv 5257 . . 3  class  ( ( glb `  p ) `
 ( Base `  p
) )
102, 3, 9cmpt 4079 . 2  class  ( p  e.  _V  |->  ( ( glb `  p ) `
 ( Base `  p
) ) )
111, 10wceq 1625 1  wff  0.  =  ( p  e.  _V  |->  ( ( glb `  p
) `  ( Base `  p ) ) )
Colors of variables: wff set class
This definition is referenced by:  p0val  14149
  Copyright terms: Public domain W3C validator