MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-plr Unicode version

Definition df-plr 8637
Description: Define addition on signed reals. This is a "temporary" set used in the construction of complex numbers df-c 8697, and is intended to be used only by the construction. From Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 25-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
df-plr  |-  +R  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e. 
R.  /\  y  e.  R. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~R  /\  y  =  [ <. u ,  f >. ]  ~R  )  /\  z  =  [
( <. w ,  v
>.  +pR  <. u ,  f
>. ) ]  ~R  )
) }
Distinct variable group:    x, y, z, w, v, u, f

Detailed syntax breakdown of Definition df-plr
StepHypRef Expression
1 cplr 8447 . 2  class  +R
2 vx . . . . . . 7  set  x
32cv 1618 . . . . . 6  class  x
4 cnr 8443 . . . . . 6  class  R.
53, 4wcel 1621 . . . . 5  wff  x  e. 
R.
6 vy . . . . . . 7  set  y
76cv 1618 . . . . . 6  class  y
87, 4wcel 1621 . . . . 5  wff  y  e. 
R.
95, 8wa 360 . . . 4  wff  ( x  e.  R.  /\  y  e.  R. )
10 vw . . . . . . . . . . . . . 14  set  w
1110cv 1618 . . . . . . . . . . . . 13  class  w
12 vv . . . . . . . . . . . . . 14  set  v
1312cv 1618 . . . . . . . . . . . . 13  class  v
1411, 13cop 3603 . . . . . . . . . . . 12  class  <. w ,  v >.
15 cer 8442 . . . . . . . . . . . 12  class  ~R
1614, 15cec 6612 . . . . . . . . . . 11  class  [ <. w ,  v >. ]  ~R
173, 16wceq 1619 . . . . . . . . . 10  wff  x  =  [ <. w ,  v
>. ]  ~R
18 vu . . . . . . . . . . . . . 14  set  u
1918cv 1618 . . . . . . . . . . . . 13  class  u
20 vf . . . . . . . . . . . . . 14  set  f
2120cv 1618 . . . . . . . . . . . . 13  class  f
2219, 21cop 3603 . . . . . . . . . . . 12  class  <. u ,  f >.
2322, 15cec 6612 . . . . . . . . . . 11  class  [ <. u ,  f >. ]  ~R
247, 23wceq 1619 . . . . . . . . . 10  wff  y  =  [ <. u ,  f
>. ]  ~R
2517, 24wa 360 . . . . . . . . 9  wff  ( x  =  [ <. w ,  v >. ]  ~R  /\  y  =  [ <. u ,  f >. ]  ~R  )
26 vz . . . . . . . . . . 11  set  z
2726cv 1618 . . . . . . . . . 10  class  z
28 cplpr 8440 . . . . . . . . . . . 12  class  +pR
2914, 22, 28co 5778 . . . . . . . . . . 11  class  ( <.
w ,  v >.  +pR  <. u ,  f
>. )
3029, 15cec 6612 . . . . . . . . . 10  class  [ (
<. w ,  v >.  +pR  <. u ,  f
>. ) ]  ~R
3127, 30wceq 1619 . . . . . . . . 9  wff  z  =  [ ( <. w ,  v >.  +pR  <. u ,  f >. ) ]  ~R
3225, 31wa 360 . . . . . . . 8  wff  ( ( x  =  [ <. w ,  v >. ]  ~R  /\  y  =  [ <. u ,  f >. ]  ~R  )  /\  z  =  [
( <. w ,  v
>.  +pR  <. u ,  f
>. ) ]  ~R  )
3332, 20wex 1537 . . . . . . 7  wff  E. f
( ( x  =  [ <. w ,  v
>. ]  ~R  /\  y  =  [ <. u ,  f
>. ]  ~R  )  /\  z  =  [ ( <. w ,  v >.  +pR  <. u ,  f
>. ) ]  ~R  )
3433, 18wex 1537 . . . . . 6  wff  E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~R  /\  y  =  [ <. u ,  f >. ]  ~R  )  /\  z  =  [
( <. w ,  v
>.  +pR  <. u ,  f
>. ) ]  ~R  )
3534, 12wex 1537 . . . . 5  wff  E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~R  /\  y  =  [ <. u ,  f
>. ]  ~R  )  /\  z  =  [ ( <. w ,  v >.  +pR  <. u ,  f
>. ) ]  ~R  )
3635, 10wex 1537 . . . 4  wff  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~R  /\  y  =  [ <. u ,  f >. ]  ~R  )  /\  z  =  [
( <. w ,  v
>.  +pR  <. u ,  f
>. ) ]  ~R  )
379, 36wa 360 . . 3  wff  ( ( x  e.  R.  /\  y  e.  R. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~R  /\  y  =  [ <. u ,  f
>. ]  ~R  )  /\  z  =  [ ( <. w ,  v >.  +pR  <. u ,  f
>. ) ]  ~R  )
)
3837, 2, 6, 26coprab 5779 . 2  class  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  R.  /\  y  e.  R. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~R  /\  y  =  [ <. u ,  f
>. ]  ~R  )  /\  z  =  [ ( <. w ,  v >.  +pR  <. u ,  f
>. ) ]  ~R  )
) }
391, 38wceq 1619 1  wff  +R  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e. 
R.  /\  y  e.  R. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~R  /\  y  =  [ <. u ,  f >. ]  ~R  )  /\  z  =  [
( <. w ,  v
>.  +pR  <. u ,  f
>. ) ]  ~R  )
) }
Colors of variables: wff set class
This definition is referenced by:  addsrpr  8651  dmaddsr  8661
  Copyright terms: Public domain W3C validator