MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-prm Unicode version

Definition df-prm 13068
Description: Define the set of prime numbers. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
df-prm  |-  Prime  =  { p  e.  NN  |  { n  e.  NN  |  n  ||  p }  ~~  2o }
Distinct variable group:    n, p

Detailed syntax breakdown of Definition df-prm
StepHypRef Expression
1 cprime 13067 . 2  class  Prime
2 vn . . . . . . 7  set  n
32cv 1651 . . . . . 6  class  n
4 vp . . . . . . 7  set  p
54cv 1651 . . . . . 6  class  p
6 cdivides 12840 . . . . . 6  class  ||
73, 5, 6wbr 4204 . . . . 5  wff  n  ||  p
8 cn 9989 . . . . 5  class  NN
97, 2, 8crab 2701 . . . 4  class  { n  e.  NN  |  n  ||  p }
10 c2o 6709 . . . 4  class  2o
11 cen 7097 . . . 4  class  ~~
129, 10, 11wbr 4204 . . 3  wff  { n  e.  NN  |  n  ||  p }  ~~  2o
1312, 4, 8crab 2701 . 2  class  { p  e.  NN  |  { n  e.  NN  |  n  ||  p }  ~~  2o }
141, 13wceq 1652 1  wff  Prime  =  { p  e.  NN  |  { n  e.  NN  |  n  ||  p }  ~~  2o }
Colors of variables: wff set class
This definition is referenced by:  isprm  13069
  Copyright terms: Public domain W3C validator