MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-re Structured version   Unicode version

Definition df-re 11936
Description: Define a function whose value is the real part of a complex number. See reval 11942 for its value, recli 12003 for its closure, and replim 11952 for its use in decomposing a complex number. (Contributed by NM, 9-May-1999.)
Assertion
Ref Expression
df-re  |-  Re  =  ( x  e.  CC  |->  ( ( x  +  ( * `  x
) )  /  2
) )

Detailed syntax breakdown of Definition df-re
StepHypRef Expression
1 cre 11933 . 2  class  Re
2 vx . . 3  set  x
3 cc 9019 . . 3  class  CC
42cv 1652 . . . . 5  class  x
5 ccj 11932 . . . . . 6  class  *
64, 5cfv 5483 . . . . 5  class  ( * `
 x )
7 caddc 9024 . . . . 5  class  +
84, 6, 7co 6110 . . . 4  class  ( x  +  ( * `  x ) )
9 c2 10080 . . . 4  class  2
10 cdiv 9708 . . . 4  class  /
118, 9, 10co 6110 . . 3  class  ( ( x  +  ( * `
 x ) )  /  2 )
122, 3, 11cmpt 4291 . 2  class  ( x  e.  CC  |->  ( ( x  +  ( * `
 x ) )  /  2 ) )
131, 12wceq 1653 1  wff  Re  =  ( x  e.  CC  |->  ( ( x  +  ( * `  x
) )  /  2
) )
Colors of variables: wff set class
This definition is referenced by:  reval  11942  ref  11948  cnre2csqima  24340
  Copyright terms: Public domain W3C validator