MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-sdom Structured version   Unicode version

Definition df-sdom 7148
Description: Define the strict dominance relation. Alternate possible definitions are derived as brsdom 7166 and brsdom2 7267. Definition 3 of [Suppes] p. 97. (Contributed by NM, 31-Mar-1998.)
Assertion
Ref Expression
df-sdom  |-  ~<  =  (  ~<_  \  ~~  )

Detailed syntax breakdown of Definition df-sdom
StepHypRef Expression
1 csdm 7144 . 2  class  ~<
2 cdom 7143 . . 3  class  ~<_
3 cen 7142 . . 3  class  ~~
42, 3cdif 3306 . 2  class  (  ~<_  \  ~~  )
51, 4wceq 1654 1  wff  ~<  =  (  ~<_  \  ~~  )
Colors of variables: wff set class
This definition is referenced by:  relsdom  7152  brsdom  7166  dfdom2  7169  dfsdom2  7266
  Copyright terms: Public domain W3C validator