Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-shft Structured version   Unicode version

Definition df-shft 11874
 Description: Define a function shifter. This operation offsets the value argument of a function (ordinarily on a subset of ) and produces a new function on . See shftval 11881 for its value. (Contributed by NM, 20-Jul-2005.)
Assertion
Ref Expression
df-shft
Distinct variable group:   ,,,

Detailed syntax breakdown of Definition df-shft
StepHypRef Expression
1 cshi 11873 . 2
2 vf . . 3
3 vx . . 3
4 cvv 2948 . . 3
5 cc 8980 . . 3
6 vy . . . . . . 7
76cv 1651 . . . . . 6
87, 5wcel 1725 . . . . 5
93cv 1651 . . . . . . 7
10 cmin 9283 . . . . . . 7
117, 9, 10co 6073 . . . . . 6
12 vz . . . . . . 7
1312cv 1651 . . . . . 6
142cv 1651 . . . . . 6
1511, 13, 14wbr 4204 . . . . 5
168, 15wa 359 . . . 4
1716, 6, 12copab 4257 . . 3
182, 3, 4, 5, 17cmpt2 6075 . 2
191, 18wceq 1652 1
 Colors of variables: wff set class This definition is referenced by:  shftfval  11877
 Copyright terms: Public domain W3C validator