MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-smo Unicode version

Definition df-smo 6358
Description: Definition of a strictly monotone ordinal function. Definition 7.46 in [TakeutiZaring] p. 50. (Contributed by Andrew Salmon, 15-Nov-2011.)
Assertion
Ref Expression
df-smo  |-  ( Smo 
A  <->  ( A : dom  A --> On  /\  Ord  dom 
A  /\  A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y
) ) ) )
Distinct variable group:    x, y, A

Detailed syntax breakdown of Definition df-smo
StepHypRef Expression
1 cA . . 3  class  A
21wsmo 6357 . 2  wff  Smo  A
31cdm 4688 . . . 4  class  dom  A
4 con0 4391 . . . 4  class  On
53, 4, 1wf 5217 . . 3  wff  A : dom  A --> On
63word 4390 . . 3  wff  Ord  dom  A
7 vx . . . . . . 7  set  x
8 vy . . . . . . 7  set  y
97, 8wel 1689 . . . . . 6  wff  x  e.  y
107cv 1627 . . . . . . . 8  class  x
1110, 1cfv 5221 . . . . . . 7  class  ( A `
 x )
128cv 1627 . . . . . . . 8  class  y
1312, 1cfv 5221 . . . . . . 7  class  ( A `
 y )
1411, 13wcel 1688 . . . . . 6  wff  ( A `
 x )  e.  ( A `  y
)
159, 14wi 6 . . . . 5  wff  ( x  e.  y  ->  ( A `  x )  e.  ( A `  y
) )
1615, 8, 3wral 2544 . . . 4  wff  A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y
) )
1716, 7, 3wral 2544 . . 3  wff  A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y
) )
185, 6, 17w3a 939 . 2  wff  ( A : dom  A --> On  /\  Ord  dom  A  /\  A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  -> 
( A `  x
)  e.  ( A `
 y ) ) )
192, 18wb 178 1  wff  ( Smo 
A  <->  ( A : dom  A --> On  /\  Ord  dom 
A  /\  A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y
) ) ) )
Colors of variables: wff set class
This definition is referenced by:  dfsmo2  6359  issmo  6360  smoeq  6362  smodm  6363  smores  6364  smofvon  6371  smoel  6372  smoiso  6374
  Copyright terms: Public domain W3C validator