Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-sqr Structured version   Unicode version

Definition df-sqr 12071
 Description: Define a function whose value is the square root of a complex number. Since iff , we ensure uniqueness by restricting the range to numbers with positive real part, or numbers with 0 real part and nonnegative imaginary part. A description can be found under "Principal square root of a complex number" at http://en.wikipedia.org/wiki/Square_root. The square root symbol was introduced in 1525 by Christoff Rudolff. See sqrcl 12196 for its closure, sqrval 12073 for its value, sqrth 12199 and sqsqri 12210 for its relationship to squares, and sqr11i 12219 for uniqueness. (Contributed by NM, 27-Jul-1999.) (Revised by Mario Carneiro, 8-Jul-2013.)
Assertion
Ref Expression
df-sqr
Distinct variable group:   ,

Detailed syntax breakdown of Definition df-sqr
StepHypRef Expression
1 csqr 12069 . 2
2 vx . . 3
3 cc 9019 . . 3
4 vy . . . . . . . 8
54cv 1652 . . . . . . 7
6 c2 10080 . . . . . . 7
7 cexp 11413 . . . . . . 7
85, 6, 7co 6110 . . . . . 6
92cv 1652 . . . . . 6
108, 9wceq 1653 . . . . 5
11 cc0 9021 . . . . . 6
12 cre 11933 . . . . . . 7
135, 12cfv 5483 . . . . . 6
14 cle 9152 . . . . . 6
1511, 13, 14wbr 4237 . . . . 5
16 ci 9023 . . . . . . 7
17 cmul 9026 . . . . . . 7
1816, 5, 17co 6110 . . . . . 6
19 crp 10643 . . . . . 6
2018, 19wnel 2606 . . . . 5
2110, 15, 20w3a 937 . . . 4
2221, 4, 3crio 6571 . . 3
232, 3, 22cmpt 4291 . 2
241, 23wceq 1653 1
 Colors of variables: wff set class This definition is referenced by:  sqrval  12073  sqrf  12198
 Copyright terms: Public domain W3C validator