MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-sum Unicode version

Definition df-sum 12154
Description: Define the sum of a series with an index set of integers  A.  k is normally a free variable in  B, i.e.  B can be thought of as  B ( k ). This definition is the result of a collection of discussions over the most general definition for a sum that does not need the index set to have a specified ordering. This definition is in two parts, one for finite sums and one for subsets of the upper integers. When summing over a subset of the upper integers, we extend the index set to the upper integers by adding zero outside the domain, and then sum the set in order, setting the result to the limit of the partial sums, if it exists. This means that conditionally convergent sums can be evaluated meaningfully. For finite sums, we are explicitly order-independent, by picking any bijection to a 1-based finite sequence and summing in the induced order. These two methods of summation produce the same result on their common region of definition (i.e. finite subsets of the upper integers) by summo 12185. Examples:  sum_ k  e. 
{ 1 ,  2 ,  4 }  k means  1  +  2  + 
4  =  7, and  sum_ k  e.  NN  ( 1  / 
( 2 ^ k
) )  =  1 means 1/2 + 1/4 + 1/8 + ... = 1 (geoihalfsum 12333). (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jul-2013.)
Assertion
Ref Expression
df-sum  |-  sum_ k  e.  A  B  =  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) )
Distinct variable groups:    f, k, m, n, x    A, f, m, n, x    B, f, m, n, x
Allowed substitution hints:    A( k)    B( k)

Detailed syntax breakdown of Definition df-sum
StepHypRef Expression
1 cA . . 3  class  A
2 cB . . 3  class  B
3 vk . . 3  set  k
41, 2, 3csu 12153 . 2  class  sum_ k  e.  A  B
5 vm . . . . . . . . 9  set  m
65cv 1623 . . . . . . . 8  class  m
7 cuz 10226 . . . . . . . 8  class  ZZ>=
86, 7cfv 5222 . . . . . . 7  class  ( ZZ>= `  m )
91, 8wss 3154 . . . . . 6  wff  A  C_  ( ZZ>= `  m )
10 caddc 8736 . . . . . . . 8  class  +
11 cz 10020 . . . . . . . . 9  class  ZZ
123cv 1623 . . . . . . . . . . 11  class  k
1312, 1wcel 1685 . . . . . . . . . 10  wff  k  e.  A
14 cc0 8733 . . . . . . . . . 10  class  0
1513, 2, 14cif 3567 . . . . . . . . 9  class  if ( k  e.  A ,  B ,  0 )
163, 11, 15cmpt 4079 . . . . . . . 8  class  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )
1710, 16, 6cseq 11041 . . . . . . 7  class  seq  m
(  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )
18 vx . . . . . . . 8  set  x
1918cv 1623 . . . . . . 7  class  x
20 cli 11953 . . . . . . 7  class  ~~>
2117, 19, 20wbr 4025 . . . . . 6  wff  seq  m
(  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x
229, 21wa 360 . . . . 5  wff  ( A 
C_  ( ZZ>= `  m
)  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x )
2322, 5, 11wrex 2546 . . . 4  wff  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x )
24 c1 8734 . . . . . . . . 9  class  1
25 cfz 10777 . . . . . . . . 9  class  ...
2624, 6, 25co 5820 . . . . . . . 8  class  ( 1 ... m )
27 vf . . . . . . . . 9  set  f
2827cv 1623 . . . . . . . 8  class  f
2926, 1, 28wf1o 5221 . . . . . . 7  wff  f : ( 1 ... m
)
-1-1-onto-> A
30 vn . . . . . . . . . . 11  set  n
31 cn 9742 . . . . . . . . . . 11  class  NN
3230cv 1623 . . . . . . . . . . . . 13  class  n
3332, 28cfv 5222 . . . . . . . . . . . 12  class  ( f `
 n )
343, 33, 2csb 3083 . . . . . . . . . . 11  class  [_ (
f `  n )  /  k ]_ B
3530, 31, 34cmpt 4079 . . . . . . . . . 10  class  ( n  e.  NN  |->  [_ (
f `  n )  /  k ]_ B
)
3610, 35, 24cseq 11041 . . . . . . . . 9  class  seq  1
(  +  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) )
376, 36cfv 5222 . . . . . . . 8  class  (  seq  1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m )
3819, 37wceq 1624 . . . . . . 7  wff  x  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ (
f `  n )  /  k ]_ B
) ) `  m
)
3929, 38wa 360 . . . . . 6  wff  ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ (
f `  n )  /  k ]_ B
) ) `  m
) )
4039, 27wex 1529 . . . . 5  wff  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) )
4140, 5, 31wrex 2546 . . . 4  wff  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) )
4223, 41wo 359 . . 3  wff  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )
4342, 18cio 6251 . 2  class  ( iota
x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x )  \/ 
E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) ) ) )
444, 43wceq 1624 1  wff  sum_ k  e.  A  B  =  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) )
Colors of variables: wff set class
This definition is referenced by:  sumex  12155  sumeq1f  12156  nfsum1  12158  nfsum  12159  sumeq2w  12160  sumeq2ii  12161  cbvsum  12163  zsum  12186  fsum  12188
  Copyright terms: Public domain W3C validator