MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-topn Structured version   Unicode version

Definition df-topn 13643
Description: Define the topology extractor function. This differs from df-tset 13540 when a structure has been restricted using df-ress 13468; in this case the TopSet component will still have a topology over the larger set, and this function fixes this by restricting the topology as well. (Contributed by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
df-topn  |-  TopOpen  =  ( w  e.  _V  |->  ( (TopSet `  w )t  ( Base `  w ) ) )

Detailed syntax breakdown of Definition df-topn
StepHypRef Expression
1 ctopn 13641 . 2  class  TopOpen
2 vw . . 3  set  w
3 cvv 2948 . . 3  class  _V
42cv 1651 . . . . 5  class  w
5 cts 13527 . . . . 5  class TopSet
64, 5cfv 5446 . . . 4  class  (TopSet `  w )
7 cbs 13461 . . . . 5  class  Base
84, 7cfv 5446 . . . 4  class  ( Base `  w )
9 crest 13640 . . . 4  classt
106, 8, 9co 6073 . . 3  class  ( (TopSet `  w )t  ( Base `  w
) )
112, 3, 10cmpt 4258 . 2  class  ( w  e.  _V  |->  ( (TopSet `  w )t  ( Base `  w
) ) )
121, 11wceq 1652 1  wff  TopOpen  =  ( w  e.  _V  |->  ( (TopSet `  w )t  ( Base `  w ) ) )
Colors of variables: wff set class
This definition is referenced by:  topnfn  13645  topnval  13654
  Copyright terms: Public domain W3C validator